Clusters with Picometer Distance of Deuterons and LENR

H. Hora¹, G.H. Miley², L. Holmlid³, X. Yang

¹Department of Theoretical Physics, University of New South Wales, Sydney 2052, Australia
²Department of Nuclear, Plasma and Radiology Engineering, University of Illinois, Urbana, IL 61801, USA
³Atmospheric Science, Department of Chemistry, University of Gothenburg, 41296 Gothenburg, Sweden

The probability of pm-Ms reactions for low energy nuclear reactions LENR and the semi-empirical derivation of 2 pm deuteron screening on palladium with a reduction factor 14 in Coulomb repulsion compared with a usual plasma factor 5 [1] was confirmed later by direct experiments [2]. Generation of 2pm distance clusters of about 150 deuterons based on this screening and possibly by a Casimir force [3] permitted understanding of compound reactions as measured with the 155 nucleon minimum measured at LENR. These kinds of deuteron clusters were directly measured by SQUID [4]. Based on screening and comparable values of a Wigner-Seitz radius for very dense deuteron clusters of stable Rydberg matter in defects of iron oxide [5] with measured 2.3 pm nuclear distance is another access which may lead to an understanding of the LENR processes [6].

Clusters with Picometer Distance of Deuterons and LENR

George H. Miley¹, X. Yang¹, Heinrich Hora², L. Andersson³ & Leif Holmlid³, Andrea Lipson⁴

1. Department of nuclear, Plasma and radiological Engineering, Univ. of Illinois, Urbana, IL
2. Dep. Theoretical Physics University of New South Wales, Sydney, Australia
3. Department of Chemistry, Gothenburg University, Gothenburg, Sweden
Search for Nuclear Reactive Site

Review of peioe data suggests localized high density regions.
Reflections on prior work

- Attempts to improve Patterson cell bead type electrodes
 - Beautiful sputtered ones performed poorly compared to “poor” quality electroplated coatings
- Why???
- Other evidence for localized reactions
 - Craters, localized Cr 39, spotty x-ray film, profile of transmutation products
Hypothesis

- The abnormal products from thin films during electrolysis are related to the high density H/D clusters in the dislocation loops formed at the multilayer thin film interfaces.
Dislocation-Loop-cluster Studies to verify this hypothesis

- Pd thin foil – 12 µm
- Grow an oxide layer on top of both side foil by heating the foil in butane torch – facilitate deuterium diffusion, prevent dislocation annihilation
- Loading and unloading deuterium/hydrogen was done by cyclically cathodizing and anodizing Pd foil
When the stress is large enough, dislocation cores form at \(\alpha/\beta\) transformation interface with core radius of one burgers factor, 0.275nm.
Dislocation Formation 2
Measurement #1 - Temperature Programmed Desorption

After the loading foil was annealed under 300 °C for 2 hr, the temperature was ramped from 20 °C to 800 °C at 9 °C /min.

Binding Energy calculation – close to the binding energy between hydrogen and dislocation

\[\varepsilon_H = k_B \frac{T_2 T_1}{(T_2 - T_1)} \ln\left(\frac{P_2}{P_1}\right) \]

H/Pd ~ 1.8
Measurement #2 - Magnetic Moment Measurements show superconducting state

The magnetic moment of H^2- cycled PdHx samples in the temperature range of $2 \leq T < 70$ K is significantly lower than $M(T)$ for the original Pd/PdO.

Conclusion: superconductivity state < 70 K and D Cluster condensation at room temperature
Predictions

LENR cell with high packing fraction (>10%) of cluster forming defects leads to large (> 500%) excess heat.
New quest – large # of cluster sites /cc

- 5 methods under investigation
- Down select based on desorption measurements
- Further down select based on chg pt and excess heat studies or ICF scans
- Use in proto power cell.
Requirements - classical loading and flux no longer figures of merit.

- Loading equivalent in clusters – 10^{18}/cc
- > 100 atoms / cluster
- Proper trigger
 - Pulsed current
 - Pulsed diffusion flux
 - Particle-photon stimulation
 - [compression] = icf target
5 types Nano-Structured electrodes under study-- Ex 1

- Objective – mimic dislocation loop structure obtained from cycling, but –
- Increase the density (#/cc) of loops
Nano-Structure electrodes

Ni felt

Ni Foam

Zoom-in view showing Pd nanostructures on the Ni Foam
Ex 2 - Clusters in Rydberg Matter and in Inverted Rydberg Matter

Known from space chemistry: New catalytic generation of deuterium clusters in surface defects of iron oxide. Emission of clusters and laser irradiation confirms binding energy of 620 eV and distance between deuterons of \(d = 2.3 \, \text{pm} \) with density of \(n_D = 10^{29} \, \text{cm}^{-3} \).

Rydberg Matter

Atoms where the orbital quantum number $\ell = 1$ or higher

distance of atoms in H2 molecules is 74 pm, but with $\ell = 1$, distance is 150 pm.

In Universe: these atoms form clusters called H(1) or D(1)
Inverted Rydberg matter

Binding of a deuteron in the field of an electron: state D(-1)

“Bohr”-radius d is reduced

$$\frac{d_R}{d_{R^*}} = \left(\frac{m_D}{m_e}\right)^{1/2}$$

Distance = 2.4 pm
Measured: 2.3 pm
Catalytic Generation of D(1)

Clusters in defects in iron oxide for low temperature generation

Our recent experiments verified this using a laser to expel the electron and a TOF measurement of ion recoil energy.
Cluster view = road map to high gain cell -
Current view of a Hydride Gas-Loaded Thin
Film Cluster-type Electrode

TPS Summit, Wash. DC, Jan. 2009
Alternate use – non-crogogenic ICF targets. Cluster give ultra high compressed density and fusion reaction rates

I st exps to test compression scheduled at LANL in fall
Conclusions

- Experimental evidence confirms cluster formation in dislocation loops
- Methods to fabricate high loop density under study
- Conceptually offers a high reaction rate electrode for LENR or for ICF target
- First test – ICF target shots at LANL in fall.
- LENR cell studies to follow down selection process – hopefully late fall.
- Many issues remain –

For further information, contact George H. Miley
ghmiley@uiuc.edu
217-3333772