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The Nuts and Bolts of our Ion Band State theory of low energy nuclear reactions (LENR�s) in palladium-deuteride 
(PdD) and palladium-hydride (PdH) are the electrons that hold together or tear apart the bonds (or lack of bonds) 
between deuterons (d's) or protons (p�s) and the host material.  In PdDx and PdHx, this bonding is strongly correlated 
with loading.  In ambient loading conditions (x<~0.6), bonding inhibits Ion Band State occupation.  As x , slight 
increases and decreases in loading can induce �vibrations� (which have conventionally been thought to occur from 
phonons) that can induce potential losses or increases of p/d.  Naive assumptions about phonons fail to include these 
losses and increases.  These effects can occur because neither H or D has core electrons and because in either PdD or 
PdH, the electrons near the Fermi Energy have negligible overlap with the nucleus of either D or H.  In the past, 
implicitly, we have used these facts to justify our Ion Band State theory.  Here, we present a more formal justification, 
based on the relationship between H(D) Ion Band States (IBS�s) and H(D) phonons that includes a microscopic picture 
that explains why occupation of IBS�s can occur in PdD and PdH and how this can lead to nuclear reactions.  

1→

1 Introduction 

Previously, we suggested that as x 1, to minimize energy, a small number of the deuterons (d's), found 
in deuterium ( D) atoms in a PdD

→
x host,  or of protons (p's), in hydrogen (H) atoms in PdHx, could occupy wave-

like, Ion Band States (similar to the kinds of itinerant, wave-like states that electrons occupy in solids). We also 
suggested that subsequently, once in Ion Band States (IBS�s), d's could have such significant overlap with each 
other that a distinctly different form of nuclear reaction might occur at many periodically equivalent locations, 
simultaneously.  Thus, we predicted that  d�s and p�s could react in a solid but that the processes would be 
dominated by d+d → 4He reactions and would occur without appreciable energy or momentum transfer within bulk 
regions (where periodic order was assumed to be present), to regions outside the bulk, and without appreciable 
radiation or high energy particles. 

One limitation of this picture is its qualitative description of the coupling between electromagnetic- and 
nuclear- scale effects and larger length-scale coupling to the lattice.  A second reason the theory has not been widely 
accepted, despite the fact its predictions have been independently borne out by experiment1, is the seemingly 
counter-intuitive limit where it applies: when d/p can become wave-like and react in a nuclear fashion, to minimize 
total electromagnetic energy, through processes that are manifestly static, and non-dynamic. 

In the paper, we summarize key features of our model, which include the possibility of ion transport into 
and away from a PdH or PdD host, as well as additional quantum mechanical effects involving ion transport, based 
on a natural generalization of electron band theory, in which �phonons� involving p, d, and, implicitly, tritons (t) are 
replaced by IBS�s involving p, d, or t.  The generalization of the earlier model justifies: 1.Our energy minimization 
procedure, 2.The conclusion that heat and by-products are required to be released with low energy, near surfaces, 
and 3.A more refined estimate of the minimal crystal size that is required to initiate the reaction process. 
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2 Phonons and Ion Band States in PdH and PdD 

2.1 Phonons in Infinitely Ordered Solids 
In the conventional phonon problem, vibrations are introduced by allowing for a small displacement u( 

≡u(Rn,α)) of an individual atom (at position τα), relative to its equilibrium location r'=Rn,α (= τα-Rn ), in a unit cell, 
centered at a Bravais vector2 Rn.  Each vibration is assumed to occur in response to a well-defined (attractive) 
restoring force that acts on the atom to drive it towards the location (Rn,α ) that the atom would have in a static 
lattice (defined  by temperature T=0, in an ordered solid ), where the net force, acting on any atom vanishes  
( , V=total potential energy).  This restoring force is introduced through the difference in relative 

positions, R- R
00 =−∇ =)'r(U'r |V

e +u(R)-u(Re) between atoms at locations r= R+u(R) and r�=Re � u(Re) and involves differences of 
the form (u(Rn,β)-u(Rn',β'))  (xjx

j=x , xj=y , or xj=z, respectively, for j=1, j=2, or j=3), which also can be expressed in 
a more general way: u(Rn,α)-u(Rn',α') = (u(Rjx

n)-u(Rn')j  (where )(jj β= = j�+(jβ−1) 3;  j�=1,3, Rn,β(jβ)=Rn - τ(jβ), τ(jβ) 
= location of a particular atom associated with the value of jβ=1,Natom , and Natom =number of atoms per unit cell).   
Then, when V only depends on the relative separations (r-r�) between atoms,  

 V= Veq +Σk,i,j Ui(k)*Di,j(k)Uj(k),    (1) 
where Ui(k) is a �normal mode�, defined by the discrete fourier transform of u(r),  
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Di,j(k) (the Dynamical Matrix) is related to the fourier transform of the gradient of the (attractive) force between 
pairs of atoms. 

Also, it is usually assumed that this discrete fourier transform can be imposed using periodic (Born-
VonKarman) boundary conditions u(Rn+Lα)=u(Rn) (α=1,3) in each of three independent directions, associated with 
macroscopically finite displacements (Lα) that are assumed to be so microscopically large that they do not affect the 
associated dynamics.  From this starting point, heuristically, a mathematically well-defined framework has been 
used, to investigate vibrations, using wave-vectors k (assoiciated with Eq. 2) that are confined to the first Brillouin 
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parallel to Lα (so that the total number of unit cells=N=8N1N2N3). 
Initially the theory was used to study heat dissipation in insulators and semi-conductors.  Subsequently, 

through Density Functional Theory, it has become possible to apply the theory to metals, provided a specific normal 
mode Ui(k) becomes dominant.  In this limit, when the motion, frequency and deformation of the atom can be 
treated as being static (frozen), relative to effects associated with electrons, a series of �frozen phonon� calculations, 
of electronic structure, in which distortions of the lattice are treated as being dynamically uncoupled from the 
changes in electrons, can be used to infer phonon motion (and related effects). In each of these calculations, 

different values of are derived using a single term, )(Ru n,
i

α
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=dU of the inverse fourier transform Eq. 2 

(based on the assumption that a single mode is dominant):  u =2dUcos(i α )Rk n• . 
 

2.2 Phonons in PdD and PdH, and their Relationship to Ion Band States 
 

Klein and Cohen (KC) performed frozen phonon calculations in PdD and PdH of "zone center" (k=0) H(D) 
phonons3, in which H(D) motion at full-loading was modeled using measurements4 of optical phonon spectra that 
were made with ambient loading conditions (x~.6, in PdDx and PdHx ), at liquid nitrogen (and higher) temperatures, 
as opposed to the (valid) full-loading value (x=1), where their calculations apply.  These authors realized because of 
large an-harmonic effects, an approximate Schroedinger Equation should be used to quantify the motion of H(D) 
nuclear centers, as opposed to an alternative model, based on the harmonic approximation.  They failed to 



distinguish between effects associated with ambient- and full- loading.  They also omitted effects related to finite 
size, external forces and increases in H and/or D. Their simulations (in an infinite, periodic solid, at vanishing 
temperature T~0) may be relevant for deterimining average quantities in large crystalline hosts. 

 KC's omissions as well as omissions in other models that treat phonons as being neutrally-charged fail to 
include a distinctive bonding feature of H and its isotopes in a metallic host: the possibility that the �atomic centers� 
of H(D) or 3H (Tritium) can become so mobile that they can �move� in response to externally applied 
electromagnetic fields. This is possible because these atoms do not have core electrons.  Thus, these atoms can 
�bond� (or not �bond�) to a host in unusual ways in response to small, external forces.  These bonding features can 
induce vibrations (previously identified as phonons), in which the nuclei of these atoms effectively can move in 
such a way that a �net� accumulation of positive (ion) charge can occur outside the host.  Since, effectively, a net 
accumulation of charge can occur, a more accurate description of these vibrations is that they are an example of the 
itinerant (wave-like) forms of charge transport (analogous to similar, wave-like forms of charge transport, involving 
electrons) that we have previously referred to as Ion Band States (IBS�s).  For the same reason, important 
assumptions in conventional phonon theory, involving the identification of external forces, must be modified in 
situations involving H, D, or 3H adsorption into fully-loaded PdH, PdD, or Pd3H. Under ambient conditions these 
distinctions are inconsequential because a quasi-equilibrium can be established in which external forces 
approximately vanish.  At full-loading, particular features3,5 associated with the electronic states in the immediate 
vicinity of the Fermi Energy (Ef) require that  external electrical forces, either directly, or indirectly, be present. But 
these forces are omitted in simulations based on an infinite solid.  

 In principle, KC appear to have studied conventional lattice vibrations.  In fact, in a finite PdH (PdD) host, 
they simulated a form of IBS, in an asymptotic k=0, semi-classical limit where ion currents vanish.  Specifically, 
when k=0, no ion conduction (or transport of a p or d nucleus) occurs.  But at finite k, finite conduction can take 
place. This interpretation of their results applies when a small (macroscopically infinitesimal, but potentially 
microscopically large) number of H (D) atoms are forced into fully-loaded PdH (PdD) .  Then, the lowest energy 
state (which effectively mimics the lowest phonon state in their model) can, in fact, be viewed as the ground state 
(GS) energy of an IBS, associated with a compound of the form PdD1+δ , where δ (which is ~ 10-3-10-4)refers to the 
number of D nuclei per unit cell that occupy IBS�s. 

In this limit, the lowest lying, vibrational excitations of a finite PdD or PdH host are IBS�s as opposed to 
phonons because they are expected to induce forms of coupling that directly and indirectly affect electrical (and 
ionic) conduction and are omitted from conventional phonon theory.  These long-range forms of coupling are 
expected to occur because since electronic states near Ef in a PdH or PdD host have negligible overlap with D or H, 
the addition or depletion of electrons that results when H or D is removed or added to the host can induce changes 
in electronic structure that are uniformly distributed over many unit cells without appreciably altering the 
occupation of (other) states that have appreciable overlap with regions where H or D nuclei are located. 

 Detailed calculations are required to understand the microscopic physics.  But to illustrate the relationship 
between H(D) phonons (as in KC3 ) to IBS�s, it is sufficient to apply the semi-classical model, used in conventional 
electron conductivity in bulk solids. (Here, a �bulk solid� includes bulk and surface regions.) In the semi-classical 
limit, in �bulk solids�, changes in total charge can be approximately described through changes in the zero of 
energy (defined by the chemical potential). (In what follows, we do and will distinguish surface from bulk regions, 
which are both different from �bulk solids�.)  The total charge within each unit cell vanishes in bulk regions; while 
in surface regions, a net accumulation of charge in a particular unit cell can take place.  

In the limit considered by KC, the relevant zone center phonon Schroedinger equation is  
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where α =1 or 2, respectively, for the Pd or H (D) atom in PdH (PdD), and T and V are (real space) representations 
of the kinetic and potential energy, defined (through U(0)) by 
 
 ∑∑∑∑ ∇−≈∇•∇−=

==
'n,n

)R(u
,

'n,n
)R(u)R(u, n

i

'n
i

n
i

MNMN
)R(T α

αα

α
α

α
α

2
2

21

2

21 2
1

2
1 hh ,  (5) 

and  
 
 



 ∑=
n,

n
i ))R(u(V

N
)R(V

α

α
1 .   (6) 

Here, in the final approximate equality of Eq. 5, we have used the fact that in evaluating the GS energy, in the semi-
classical limit, odd terms involving the gradient are required to vanish. vvv

Also, because u( 1,3)(j )Ru()LR njn =+=++ n,n, αα ττ , V(U) is a periodic function with respect to 

translations, defined by L
v

.  This might seem to be an artifact of the (Born VonKarman) boundary conditions.  But 
because L is large microscopically, in the semi-classical limit, it can be macroscopically finite, and within bulk 
regions where the Born VonKarman boundary conditions can hold (in an approximately unambiguous manner), it 
follows that when, in the absence of outside perturbations, V(U) is required to be periodic, by construction, any 
phonon wave function, technically, is also a Bloch state,  associated with a new Bravais Lattice, in which each 
vector αL

v
 is viewed as a (microscopically large) primitive vector2.  (In fact, for the zone center situation considered 

by KC, V(U), by construction, is actually periodic over the smaller Bravais lattice, associated with the smallest 

primitive vectors, defined ααα N/Lb 2
vr

=by .) 
In the presence of the gradient terms, Ψ can be re-expressed (through an appropriate, Galilean 

transformation) in terms of an alternative wave function Ψ� that satisfies a modified Schroedinger equation, in 
which the dependence on ∇ in the original equation is globally replaced with )R(u ,nn ατ+ )R(u ,nn ατ+∇ -i∆k(τα,n +Rn,t), 

where ∆k occurs as a result of an externally applied electric field (E).  As in conventional band theory, as a function 

of time t, beginning from t=0,   ,=+
dt

dk
t) Rnn,α,(∆ tk τ   ,

dt
dk

h =e E,  and this perturbation can be (and is required 

to be, in situations where surfaces are present) non-periodic.  (Here, |e|= |proton charge|.)  Because KC modeled 
optical phonons, they only varied the H (D) coordinates and used the inverse of the reduced mass 1/µ (~1/MH or 
1/MD, MH= hydrogen mass, MD =deuterium mass) in Eq. 5.  Because, implicitly, their calculations are most 
meaningful near the equilibrium configuration, when U=0, without contributions from the gradient terms ( V∇ ) 
which are assumed to vanish.   
 In a finite crystal,  never vanishes, but when N (=number of unit cells) is sufficiently large, usually, 
the resulting effects are small.  In principle, an additional perturbation, V�, is always required: 

V∇

 

   ))R(u)R(u(
N

' 'n,''n
i

n,n
i

)RR(r',,'n,n
r

i
'n,'n,'nn

i

i αα

τταα

ττ

αα

+−+Φ∇=
−+−=

∑2
V

1  

  = )R(u|
N n,n

i

',,'n,n
)RR(rr i

'n'n,'nn,
i

i
+Φ∇ −−+= α

αα
ττ τ

αα∑1 ,    (7) 

where - =force (including externally applied E fields) between atoms separated by a distance r.  The 
dependence on an effective, external E field can be introduced (as in the conventional semi-classical theory of 
conduction) by instantaneously transforming the reference frame that is used to solve Eq. 4 to an alternative 
(accelerating frame) in which the time coordinate t is multiplied by V�.  Beginning from t=0, in the accelerating 
frame, instantaneously, as a function of t, the new wave function acquires momentum, 
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The transformation to the new frame is accomplished by defining the new wave function Ψ�, using, 
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Because in a finite PdH (PdD) host, the gradient terms are present, the zone center mode U(0), evaluated by KC is 
an approximate IBS.  

3 Ion Band State Mediated Nuclear Reactions in Finite Solids 

3.1 Microscopic Physics of H(D) Ion and Electron Band States  



 
Although the semi-classical theory of electron dynamics and conduction6 has been widely used, it has no 

formal justification, based on a microscopic theory.  In fact, beginning from an ordered GS, it is possible to formally 
justify when this treatment of conductivity applies for electrons  (and ions), based on a microscopic theory, in a 
finite crystal.  The essential physics of the associated argument is that when the GS is ordered, the lowest energy 
forms of reaction are initiated in bulk regions but induce heat through processes that are perfectly elastic in bulk 
regions, in which, effectively the momentum of the reaction is instantly transferred to the center-of-mass of the 
solid, as a whole (as in the response of a solid to a gamma ray in the Mossbauer effect).  At higher temperatures, 
alternative effects, involving phonon/ion and electron band state excitations can occur, in which (ion and electron) 
charge, again, is transported to surface and interfacial regions. 

These conclusions follow from two key features of an ordered solid, near T=0:  1.) The motion of bulk 
regions of the solid (which are regions in which charge is always conserved, and net changes in charge and total 
charge always vanish), relative to locations outside of the bulk region (in which charge is allowed to change), can 
never be determined without introducing some form of external perturbation; and 2.) The GS wave function of an 
ordered solid, in bulk regions, has minimal overlap with excited states that couple to outside forces and 
perturbations, involving non-bulk regions where charge imbalance is allowed to take place.  

The first characteristic implies a form of symmetry: In a finite lattice, it is never possible to determine the 
constant zero of (kinetic) energy or momentum of the bulk region, relative to non-bulk regions, but, to determine the 
GS, in bulk regions, it can be assumed energy is conserved.  Then, it is impossible to determine if bulk region 
particles are at rest or in motion.    

This symmetry has important consequences:  A.) Because rigid translations of the bulk uniformly shift the 
momentum of each bulk region particle, these kinds of translations do not alter the relative interactions between (or 
fluxes involving) different particles within the bulk region. B) The GS is defined in a preferred reference frame, in 
which the balance between outside forces defines the zero of energy and momentum, which, together, establish the 
energies and overlap of possible many-body states. 

An important point is that the relationship between the velocity v and momentum p, of a charged particle, 
possessing charge e and mass m, is not p=mv.  The precise relationship is mv=p-e/cA, where  A (the vector 
potential) is defined by the magnetic field, B (through the relationship ∇ × A=B) and Maxwell's Equations.  In 
particular, quantum mechanically, p and A can both change instantaneously by the same amount, even 
discontinuously, at any location, without changing the value of v of any particular particle.  The example of a 
Mossbauer-like, Galilean translation, in which all particles in the bulk region are rigidly shifted, relative to an 
observer, further illustrates subtleties associate with the effect.  In particular, since no net accumulation of charge 
occurs, it is impossible to determine if the bulk region is in motion or at rest.  This means that in the reference frame 
of an outside observer who moves with velocity -Vcm, the bulk region appears to move rigidly with total momentum 
Pcm=MVcm (M= mass of bulk solid), while in the frame in which both observer and bulk region are stationary, 
Pcm=0.  Because the transformation is rigid, the relationship between the wave functions ΨBulk(Pcm=MVcm) and 
ΨBulk(Pcm=0) in the different frames involves a simple, change in phase: 
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where is the momentum that a neutral particle with mass mcmii Vmk =h i would have in the reference frame in 
which all particles move with velocity Vcm.  The subtlety occurs because near T=0 it is never possible to determine 
whether or not the �bulk �, as envisioned, in this last example, is in motion or at rest, or whether or not its particles 
really are �neutral�, quantum mechanically.  This has important consequences.  In particular, non-local forms of 
coherence can occur, in which it is possible to maintain a T=0 situation, with no interaction, whatsoever in bulk 
regions.  This occurs when the entire bulk region moves all at once, but with different amounts of momentum 
(associated with different particles, as in Eq. 10). 

Depending on whether the bulk is in motion or at rest, relative to non-bulk regions, wherever a particular 
coordinate r associated with a particle of mass m, and charge e, appears in an expression involving the total many-
body wave function Ψ, the expression should be multiplied by a pre-factor of the form, exp(ik r), where 

k=mV
•

h cm + <e/cA(r)>, and <e/cA(r)>= kh o =po is the average, minimum (zero) of the momentum of the particle.  
Here, degeneracy can occur because A (as well as the value of ko) is never uniquely defined since the gradient of an 
arbitrary function can always be added to A, without altering the value of the magnetic field.  



However, near T=0, it is also required that in the presence of a finite lattice, the associated forms of 
interaction between many-body states involve minimal, mutual overlap, in bulk regions.  Thus, it follows that a 
discrete form of the degeneracy is involved in which, a priori, any one of the possible states, associated with a 
particular wave-vector, can couple to an alternative state associated with a different wave-vector, through an outside 
perturbation.  As a consequence, through any of the possible symmetry operations (in which the bulk is translated 
rigidly), the value of Pcm associated with one such translation can only differ from the comparable momentum of a 
second translation by the product of  h  and one of the wave-vectors within the First Brillouin Zone (defined by 
Born VonKarman boundary conditions of the finite crystal).  This result follows by considering the potential forms 
of interaction between the GS and possible, low-lying forms of excited states. 

In particular, as a function of time t, the requirement that the lowest energy (GS) many-body wave function 
ΨGS(r1,....,rn,t) have minimal coupling with outside processes, means  that its overlap with any other many-body 
state Ψ'(r1,....,rn,t) be minimized and  remain constant.  A requirement for this to occur is: 
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where terms in the second equality are defined by the many-body Schroedinger equations of Ψ� and ΨGS.   
In general, the associated integrations are unrestricted.  To minimize overlap in �bulk regions�, unrestricted 

integrations over all of the coordinates in the multi-dimensional integral, term by term, can be restricted to regions 
in the bulk, based on the criteria that to find a possible GS, the associated overlap between this state and other states 
in the bulk region be minimized. In this limited context, by restricting states to have minimal overlap with ΨGS, 
additional restrictions are imposed on ΨGS (subject to the additional, implicit assumption that, in general, at the 
boundaries of the bulk region, possible discontinuities in the gradient and vector potential, are allowed to take 
place).  Then, the associated analysis proceeds by restricting the multi-dimensional integrations in Eq. 11, 
exclusively to the bulk region.  Also, in Eq. 11,  <Ψ�| v(r)|ΨGS> is the matrix element associated with the (off-
diagonal) contribution to the  (many-body) particle velocity operator v, defined by its overlap with the states Ψ� and 
ΨGS:  
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 (12) 
where Aef((r)=(A(r)+A�(r))/2 is the arithmetic mean between the vector potential A�(r) associated with the state Ψ� 
and the comparable vector potential A(r), associated with the state ΨGS,  and the final term in Eq. 11 is defined by 
the difference between the many-body potential energy associated with states Ψ� and Ψ.  In particular, this last term, 
is given by 
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where is the difference in electromagnetic potentials associated with coupling between the 
vector potentials A�(r) and  A(r),   
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defined by the associated current J(r),   
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and (in Eq. 13), the remaining contribution to the difference in potential energy is defined by any change in 
electrostatic or other (including nuclear) contribution to the energy, associated with the transition from Ψ� (where 
the non-electro-dynamic  portion of the potential energy is Vs�) to ΨGS (which has a corresponding non-electro-
dynamic potential energy Vs). 

Eq. 11 vanishes identically whenever the energies associated with ΨGS and Ψ� are the same.  When ΨGS 
has minimal coupling to the bulk, Eq. 11 holds identically, outside the bulk, provided all of the external forces 
vanish and the total internal flux of all particles into and away from the bulk region also vanishes.  Thus, if the flux 
of particles, across all boundaries in the bulk vanishes, and the energies of the different states are the same within 
the bulk region, it follows from Eq. 11,  
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where the integration in the final term extends over the bulk region, and the surface integral (associated with v(r) ) 
extends over the boundary of the bulk region.  In principle, although this surface integral includes separate 
contributions from regions where v may become discontinuous (which are allowed to occur whenever V-V� 
becomes singular), for the purpose of identifying the GS, ΨGS and Ψ� can be selected in such a way that V-V� is 
never singular.  Then, a necessary and sufficient condition to guarantee that the left side of Eq. 2 vanishes within 
some volume, defined by a set of boundary planes, in which each point r on one boundary plane is related to a point 
r� on a second boundary plane, by one of the three vectors, αL

v
, is that  

)r(v)'r(v)Lr(v ==+ α
v

.       (16) 
In the limit in which, Ψ� and ΨGS are identically the same in the bulk region (but are allowed to be different outside 
the bulk), and Aeff equals a constant, Eq. 16 holds if and only if for each coordinate ri,  
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where r is the x, y or z component (for m=1,2, or 3) of the coordinate rm
i i. .  The general solution of Eqs. 17 and 18 

is 
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v
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Eq. 19, is a generalization of Bloch�s theorem, for finite lattices that holds, whenever it is possible to define 
boundaries through the three vectors, αL

v
, for a GS that obeys Eq. 15.  In particular, when Eq. 19 holds over 

distances that are smaller (by a factor of 2Nα), it also holds when the smaller primitive vectors  are used.  

When 
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= , it follows from Eq. 19 that  
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In general, the R.S. of Eq. 14 does not vanish.  But when  Ψ� satisfies an alternative version of Eq. 19, in which λi is 
replaced with a different eigenvalue λi

', even when A does not equal A�, provided A and A� are periodic functions, 
with respect to Bravais translations, defined by , it follows that αb
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where n is an integer, and k is one of the discrete vectors defined by the finite lattice.  Since |λi|=|λi�|=1, it follows 
that both Ψ� and ΨGS can be written using a common functional form Ψ, in which the dependence on changes in the 
phase associated with either eigenvalue (as in Eq. 21) occur through a plane-wave that changes as any of the 
coordinates is displaced by a Bravais vector Rn, and through a second function u that is periodic with respect to 
translations of any of its coordinates by Rn; i.e. for Ψ=Ψ� or Ψ=ΨGS, Ψ can be written as 
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where  for coordinates r)r...,Rr,..r(u)r,.....,r(u nnin += 11

 ii r  
i.  Because ΨGS or  Ψ� can be written using Eq. 22, the 

gradient of k •  in the exponential factor simply alters the value of A or A� through  a (trivial) gauge 
transformation (associated with changing the value of po ), for each particle in the many-body Schroedinger 
equation of the one state (associated with Vs = Vs� ) that differs from the other only through a change in po . Thus, a 
large degree of symmetry exists, in which one, two,�n, Bravais translations, in principle could be performed, in 
which the energy is not changed, while the value of po associated with the coordinate of one (or more) particles is 
shifted relative to another. (This is the origin of the generalized, double Bloch symmetry that we have previously 



used7.) In fact, outside forces constrain the lattice and break the associated degeneracy.  As alluded to above, the 
lowest energy processes involve situations, in which, in the bulk region, the state describes a configuration of 
particles that is neutral (on the average, in each unit cell), and in which all particles move with a common, velocity 

Vcm.  In this limit, 
hh

cmcm

i
ii

cm

i
ii

RMV
rm

V
rk

•
=∑ •=∑ • , and the vector potential for each charged particle is 

measured relative to its constant zero of momentum.   
In practice, determining po for the GS (and low-lying excited states) for each charged particle is formidable 

on a microscopic scale in finite crystals because as charge begins to accumulate, potentially large variations in 
electric field and charge density can occur.  For this reason, in general, it is impossible to identify GS properties 
based on the kind of (simpler) rules that apply in bulk crystals, and calculations that include specific information 
about non-bulk regions (near surfaces or interfaces) are required.  But in larger crystals, asymptotically, it is 
possible to understand, at least in an average sense, how by averaging many terms, a number of important 
approximate aspects of the associated coupling can occur in most crystals. The resulting perturbations break the 
degeneracy of the lowest energy states in the �bulk solid� by fixing the value of po associated with each particle of 
each state, relative to the comparable zero of momentum of every other particle, in every other state.  This 
requirement, also fixes the value of the zero of energy ε as a function of po ; i.e. ε=ε(po) for each particle and state 
relative to the electrostatic zero and physical vector potential that are present in the solid. The resulting values of 
ε(po) define the lowest lying energy band states.   

By requiring that <ΨGS |ΨGS>  be constant and stable with respect to infinitesimal variations in each value 
of po, it is possible to derive a generalization of the semi-classical dynamics and transport theory of charged (band 
state) particles (electrons and ions).  Here, provided externally applied forces F and charge vary sufficiently slowly 
in the external regions, the gradient of each value of ε(po) with respect to po , for a particular particle, identically 
equals the expectation value of its velocity operator v, averaged over the bulk and surface regions.  Also, provided F 
varies sufficiently slowly, the associated changes in po, obey  . Thus, a change in wave-vector 

∆k=∆p/ , as a function of time, that is conventionally associated with each band energy in the semi-classical 
theory

  =∆ ∫ dtFpo

h
6, can rigorously be interpreted as a shift in the zero of momentum of each state.  Details about this are 

discussed in the Appendix and elsewhere8. 
 
3.2 Nuts and Bolts of Ion Band State Nuclear Reactions in Solids 
 

Previously, we suggested[7-9] when the separation between two charged particles rij  (= ri -rj )  approaches 
zero, overlap can still occur if the wave function has �cusps� at these locations.  This argument addresses the 
Coulomb barrier penetration problem but only qualitatively because it involves assumptions about the cusps.  Also, 
the argument does not explain momentum transfer to the solid, and energy release. 

The argument can be generalized (because it is a limiting case of Eq.15) by replacing ΨGS with an arbitrary 
state Ψo .  Then, provided Ψo  and Ψ� have the same energy, formally, Eq. 15 can be used to define the contribution 
Tf,o to the transition matrix element, associated with a transition between Ψo and Ψ�=Ψf. (The subscript in each state 
refers to all quantum numbers.)  When each integration is extended throughout space, it  follows from the 
Lippmann-Schwinger Equation that the rate R o→f associated with the transition from Ψo (possessing initial state 

energy Eo ) to Ψf (possessing energy Ef ) is given by  |T|)E-(ER 2
of,offo δ

π
h

2
=→ , and the total reaction rate RT is 

given by 
RT .      (23) ∑ →=

f
foR

Instead of dealing with Eq. 23, directly, the earlier treatment7 dealt with a simpler (related) problem: requiring that 
the bulk region remain in its GS, during the nuclear reaction.  In particular, to remain in its GS, in the bulk:  1. No 
accumulation of charge (per unit cell) occurs;  2. All particle flux (in Eq. 15) vanishes (into and away from the 
bulk), including flux from the surface region and nuclear active reactions (NAR�s), near the location(s) where d+d 
overlap can occur.    (Implicitly, to use Eq. 15 to identify properties of the GS, particle fluxes from the NAR�s, 
defined by a collection of infinitesimally small volumes, centered about each location where overlap on a nuclear 
scale can also occur, are excluded because reactions in these regions can alter both po and the charge in the bulk.)  
Instead, in the earlier treatment7, at each location in the NAR, an approximate boundary condition (through a wave 
function cusp) was imposed.   



In the more general problem associated with Eq. 23, the earlier limit7 occurs when  the bulk region remains 
in its GS, and the variational calculation7 is equivalent to minimizing RT, with no net particle flux into the bulk, and 
contributions to RT occurring only from discontinuous changes in momentum at all boundaries (which are 
introduced, effectively, through boundary conditions, involving the cusps).  Eq. 23, in the extreme low T limit, 
justifies this picture.  Then, no interaction occurs in the bulk, and 4He is produced in IBS form7,9 but, technically, in 
regions external to the bulk (in the NAR, at locations where d+d overlap can occur), and the associated change in 
mass is converted into momentum that is transferred through perfectly elastic (Mossbauer-like) UmKlapp processes 
in which bulk region moves rigidly, and heating occurs through excitation from interaction involving residual 4He 
that is released in surface regions, where lattice heating is initiated.  Thus, the entire solid acquires a fixed 

(common) velocity Vcm , defined by 
M
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, Q=23.8 MeV) is the available momentum (from 

d+d → 4He), and because all the particles have velocity , the shift in pcm o from the cusps, resulting from 4He 

occupying IBS�s is  
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A natural generalization of the earlier model9 exists, in which to conserve momentum, this shift in po 
results in a physical change in po for the entire solid, as a whole (through the rigid shift).  In particular, this shift in 
po occurs through the dependence of the many-body wave function on the separation variable rij .  The requirement 
that the shift occur rigidly is that ∆Pcusp=G, where G is a reciprocal lattice vector2.  But again (consistent with the 
model), for the bulk to remain in its GS, the magnitude of ∆Pcusp >~ .  Using this last inequality, the 

previous equality, and a suitable (minimal magnitude) value for G ( =

cmHe
VM 4

PdDa
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PdD ) it is possible to establish a lower bound for N (=number of unit cells): 
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This bound for N holds at T=0, provided no outside sources of momentum dissipation or enhancement are present.  
In general, at finite T, many alternative forms of reaction are present. A detailed computational scheme does exist9 
for addressing this kind of problem.  Further extensions of this kind of approach can be applied.  Detailed work in 
this area probably will be carried out in the future. 
 

4 Appendix: Semi-Classical Dynamics of Ion and Electron Band States in Finite 
Crystals 

The Semi-Classical Equations of Motion that have been used to describe the dynamics of electrons in 
solids have never been formally justified.  An important reason for this is that these equations do not hold in 
general.  However, using the results of section 3.1, it is possible to generalize these equations, formally, and explain 
how as a solid becomes sufficiently large, asymptotically, these equations can be required to be valid both for 
electrons and hydrogen ions, in the limit of vanishing T.  The central physics involves appropriately incorporating 
external forces. 

In larger crystals, the relevant dynamics approximately follows from averaging many terms, either on the 
R.S. or left-side (L.S.) of Eq. 11.  This is possible when Gauss�s law applies.  Then, characteristic changes in the 
electric field can, in principle, be used to identify trends associated with approximate effects involving charge 
distribution, which, in turn, can be used to determine asymptotic limits and average values of many of the terms in 
Eq.11.  In particular, the idealized limit in which periodic order is disrupted only in directions normal to an interface 
(or surface) region can be used to illustrate how changes in a boundary can alter the conventional (bulk) picture 
(associated with energy bands, in an infinitely repeating, periodic solid) that can justify why (and when) the Semi-
Classical Equations of Motion for describing the dynamics of bulk charges that occupy band states can be used to 
describe the conduction of charge (and other transport phenomena) in solids, in the presence of boundaries.   



In particular, in this idealized limit, the generalized form of Bloch�s theorem (Eq. 19) can apply in 
directions parallel to the crystal surface (or interface). But for this case, asymptotically, in directions normal to the 
surface, but sufficiently far away, both the electrostatic potential and electric field are required to exponentially 
decay (on the average).  When the induced redistribution in charge associated with any applied field scales in a 
linear manner (which occurs universally in metals, and in Pd, in particular), exponential decay in induced charge 
and its charge density also occur.  The resulting coupling leads to finite overlap between states possessing different 
wave-vectors in the normal direction but preserves periodic symmetry in directions parallel to the surface.  In 
practice, this means that in directions normal to the surface, the values of the momentum (and wave-vector) acquire 
an imaginary component. The associated perturbations break the degeneracy of the lowest energy states in the bulk 
solid by constraining the value of the local zero of momentum pj associated with the local value of the vector 
potential A of a particular particle of a particular state, with respect to a particular coordinate rj, relative to the 
average zero of momentum po.  This requirement, as a consequence, fixes the value of any external vector potential 
A , at all points in the solid, and the requirement can also define how each particle in the bulk region can interact 
with the electromagnetic field.  

As a consequence, once the zero of momentum, po, of the solid (as a whole) is fixed, all states, associated 
with symmetries that are allowed in Eq. 19 can become possible (as opposed to a situation in which a more limited 
subset of states, associated with Eq. 10, are allowed).  In particular, in the most general situation, ∑=

j
jo pp , 

where pj is the minimum value of momentum (which we will refer to as the local zero of momentum) associated 
with the dependence of ΨGS on the coordinate rj, that asymptotically (as discussed below) can be related to a 
particular particle or (in situations involving correlation) a collection of particles.  Each value of pj, in turn, is fixed 
by the average variation in A(rj) that can result from its overlap with ΨGS with respect to this coordinate. 

Consistent with the requirement that changes in pj also preserve particle exchange symmetry, pj is required 
to be the same for each indistinguishable particle of a particular kind.  But different kinds of particles can (and 
usually will) have different values of pj.  In particular, extreme situations can occur, in which through particle 
exchange symmetry, counter-intuitive forms of coupling can occur (including Bose-Einstein Condensation) through 
energy minimization. 

Classically, the lowest value of the energy (which is a convenient definition of the zero of energy) of a 
particle that possesses mass m and velocity v occurs, locally, when v=0 (so that 02

2
1 =mv

=GSE

).  Quantum 

Mechanically, the same definition can also be used within particular regions of space, but in the presence of 
boundaries, and when indistinguishable particles are present, non-local forms of coupling can occur.  As a 
consequence, in general, every coordinate in ΨGS should be treated as having a separate zero of energy Vj.  In 
practice, because each value of Vj is defined (using Eq. 12 through matching conditions) by momentum 
conservation at the boundaries of the bulk, the problem of determining Vj in the bulk is equivalent to the problem of 
solving an equivalent minimization problem (which is frequently expressed in terms of a well-defined Rayleigh-Ritz 
variational procedure) for each eigenvalue εj (which can be defined as a generalized form of band state energy) 
associated with the many-body Schroedinger equation.  In particular, to determine the GS, it is possible (and 
consistent with energy minimization) to define each value of Vj, using, Vj=εj, and to require that . ∑

j
jε

The problem of solving the associated many-body Schroedinger Equation for each value of εj requires 
detailed information about the fluxes of particles at the boundaries of the bulk region as well as additional 
information (in situations in which correlation is present) associated with particle exchange symmetry, including 
effects involving the possible exchange of internal quantum numbers (such as magnetic spin).  Because of the wide 
variability of boundary conditions that can be imposed, it is not possible, in general, to solve this particular problem 
uniquely without imposing particular restrictions on the behavior of ΨGS in non-bulk regions.  But it is possible to 
use approximate boundary conditions associated with the relevant dynamics in order to understand a number of key 
features associated with the relevant effects.   

In particular, considerable progress can be made by requiring that the functional form of the most general 
many-body wave function that is used to describe the GS (or in the comparable wave function that describes the 
low-lying excited states) asymptotically approach the functional form that applies in the independent particle limit 
in non-bulk regions either at the boundaries of the bulk or (provided additional constraints are imposed) far from the 
boundaries of the bulk region. In particular, well-defined effects can be used to understand the behavior of the 
associated state in this asymptotic limit, immediately at the boundaries of the bulk region or far from the boundary 



(provided the wave function asymptotically approaches the associated functional form far from the boundaries and 
is non-vanishing and continuously differentiable between the boundary and the location far from the boundary 
where this functional form applies).  When this limit applies, specifically, either at the boundary, asymptotically far 
from the boundaries of the bulk region, or at intermediate locations, in non-bulk regions, functional forms 
associated with ΨGS and more general functional forms that apply for wave functions Ψ (that describe low-lying 
excited states of the bulk) can be expressed using sums of products of single particle wave functions, describing 
fermions and bosons.  Then, in these regions, each fermion (boson) wave function can be expressed using an anti-
symmetrized (symmetrized) sum of products of single particle wave functions.   

The significance associated with the possibility that this limit might apply is that when it applies, it is 
possible to identify and order the associated eigenvalues ε, using the (conventional) nomenclature (associated with 
�occupied� and �unoccupied� states) that applies in the independent, single particle picture, associated with 
conventional band theory.  As a consequence, values of ε associated with �occupied states� (in ΨGS) can be 
distinguished from �unoccupied states� (that occur in the wave functions Ψ)  that describe the low-lying excited 
states of the bulk. 

This point is significant because consistent with the requirement that changes in pj also occur (from 
symmetries involving particle exchange) through indistinguishable particles, counterintuitive relationships can 
occur (associated with energy minimization) in which changes in flux (in Eq. 12) can be enhanced or be impeded by 
effects associated with fermion or boson occupation.  These effects, which involve changes in A(rj) that result from 
changes in pj, can lead to particular forms of coupling that do (and are required to) occur.  As a consequence, the 
associated energy minimization procedure is constrained so that the total (ground state) flux of each particle ( in 
Eq.15) vanish when the integrations (in Eq. 15) are extended throughout the solid and that this flux be stable with 
respect to any infinitesimal variation in pj and the changes in the zero of energy associated with this form of 
variation.  Because exchange symmetry does not alter the internal dynamics, it is possible to introduce the 
associated effects by selecting the�global� zero of energy in an appropriate way for each particle.  This can be done 
either directly (for bosons, including d�s or 4He nuclei) or indirectly (for fermions, including p�s and electrons).  In 
particular, the value of the global zero can be equated with the lowest (for bosons) or highest (for fermions) value of 
the local zero of energy (i.e., the lowest or highest occupied band state eigenvalue ε), defined, asymptotically, by the 
non-bulk region (independent particle) wave function.  Thus, in either (the fermion or boson) case, a single, 
independent, value of ε can be used to determine the behavior of the GS and lowest states of excitation, based on a 
relative state of motion, defined by the relative momentum between the bulk and non-bulk regions.  In particular, in 
a reference frame that has momentum pj jkh≡ , relative to a frame that is stationary, the local zero of energy 

(associated with a particular band state eigenvalue, ε) can be defined by the value of the local zero of the (highest or 
lowest occupied) energy of a single particle energy state ε (=ε(kj)), associated with possible forms of interaction that 
can lead to excitations of the GS.   

For this reason, in either case (for fermions or bosons), the average zero of energy can be defined relative 
to the lowest �lying states of excitation, using a single value of the energy (which at T=0 can be equated with the 
chemical potential).  By requiring that no changes occur in the bulk region, relative to non-bulk regions, all energies 
and changes in relative momentum between particles are fixed, with respect to the possibility that the solid (as a 
whole), as in Eq. 10, be allowed to move rigidly.  By imposing the effects of such rigid forms of motion on the 
associated dynamics, it is possible to identify the lowest energy forms of response, involving the bulk region, with 
respect to outside perturbations (and forces).  For this reason, the identification of the zero of momentum and its 
evolution in response to external forces can be used to identify and introduce dynamical changes in the bulk region.  
In particular, as a consequence, because it is impossible to determine absolutely whether or not the bulk region as a 
whole, is in motion or at rest, with respect to non-bulk regions, each value of the local zero in wave vector kj  can be 
used to define the lowest lying excitations of the solid.  For the same reason, the stability of the solid with respect to 
variations involving kj can be used to define variations in the position and momentum of the bulk region (associated 
with displacements that do not alter the internal energy of the bulk) relative to non-bulk regions.  As a consequence, 

relative to the local wave-vector  kj
h

ip
≡  (associated with the local zero of energy, defined by the band state,  ε = 

ε(kj), in a particular frame), within the bulk region, to determine the GS it is required that: 1. The absolute zero 
(defined by <ΨGS |EGS-H|ΨGS >=0) of the energy be independently stable with respect to variations of each 
eigenvalue, ε(ki), and 2. The ground state flux in Eq. 15 (defined by Ψ'=ΨGS ) vanish and be stable with respect to 



any infinitesimal change in any value of kj (and shift in zero of energy ε(kj)) associated with each coordinate in ΨGS, 
relative to its initial value.  The first requirement (involving the stability of the absolute zero) is satisfied when  
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where 
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∂Ψ is the gradient of ΨGS  with respect to the wave vector 
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k =  associated with the coordinate  

that is used to define the position of each particle.  Here, the variation with respect to k

jr

j includes the dependence of 
ΨGS on implicit effects that result from changes in the zero of energy, and on explicit changes that occur when the 
momentum pj of each individual particle is separately varied.  (In particular, by rigidly shifting the zero of this value 
of momentum, implicit forms of dependence occur, for example, in the plane-wave, phase factor that results from 
the Galilean transformation in Eq. 10 and related, alternative, approximately coherent, forms of motion.)   

Specifically, here, the dependence on kj is treated implicitly through the change in the zero of energy that 
is used to define the periodic function, u (in Eq. 22 ), and explicitly through the dependence on kj that appears in the 
associated plane-wave factor (also in Eq. 22).  In particular, in the periodic function u, each coordinate rj, by 
construction, has associated with it an implicit dependence on the zero of energy, through the eigenvalue ε(ki), that 
varies as the  wave-vector, kj , is changed.   Although in a finite lattice, the spectrum of possible eigenvalues  ε(kj) 
is discrete, because these values are fixed by breaking a continuous symmetry (associated with allowing the lattice 

to rigidly shift over a continuum of possible momentum values), the gradient (
j
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) of each eigenvalue, with 

respect to changes in wave-vector kj is well-defined.  Also, in principle, the explicit dependence of Ψ on kj (through 
the phase factor) can become quite complicated through direct and indirect forms of coupling to the electromagnetic 
(EM) field.   

On the other hand, since the GS is required to have minimal coupling to outside processes, coupling 
between indistinguishable particles is distinctly different from the comparable coupling between particles that are 
distinguishable.   Thus, it is possible to assign a preferential gauge (and zero of momentum) to each 
(indistinguishable) fermion or boson, subject to the requirement that Bose-Einstein (BE) or Fermi-Dirac (FD) 
statistics apply in an appropriate manner.  In unusual circumstances, coupling to the EM field also can occur 
through effects associated with spin (and other internal states) that can alter the normal exchange properties (with 
respect to coordinates rj associated with position) of fermions and bosons.  (These effects, in particular, can become 
dominant in the asymptotic limit, involving vanishing  T, without external forces.)  For this reason, the manner in 
which variations in the zero of momentum are required to be consistent with BE or FD statistics is intimately related 
to the way the system is prepared.   

But in most situations, the limit that applies at low T occurs when system momentum and energy are 
minimized and minimal (maximal) occupation of momentum states by fermions (bosons) takes place.  In principle, 
as a consequence, it is possible that when exotic forms of interaction are present, situations can occur (involving 
fermions) in which a common value of kj can appear as a pre-factor of many different coordinates (rj) in the phase 
factor in Eq. 22.  But this kind of situation occurs infrequently.  Thus, in most situations, when fermions are 
involved, it is possible to assign a single value of kj to a single coordinate rj; while in the case of bosons (including 
situations that occur in superconductors, where even numbers of fermions become paired), because of particle 
exchange and coupling to internal quantum states, situations can occur involving many particles that can possess 
different coordinates ri', and a common wave-vector, kj.  In general, to understand how potential coupling to a 
common wave-vector kj can occur, for each set (or, potentially, subset) of indistinguishable particles, it is 
appropriate to identify a set {j'} of different coordinates (  ) and momenta (  )  of 

indistinguishable particles that can have a common wave-vector k
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to write the resulting variation in ΨGS with respect to changes kj  both implicitly (through 
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Here, in the first term, a separate subscript (j') is used for each eigenvalue, ε(kj) ( ≡ εj'(kj)), in order to account for the 
possible change in the zero of energy (∆εj'(kj)) that can occur in each coordinate (rj') of ΨGS , and the separate 
summations in both terms extend over values of j' associated with coordinates rj' in ΨGS  where (within the phase 
factor in Eq. 22) a common wave-vector kj is used.  Also, the number of independent wave-vector ( kj') values is 2N 
(since kj is in the First Brillouin Zone).   

To identify either the GS or the lowest lying excitations of the GS, Eq. A3 must hold asymptotically for 
individual terms associated with different values of j', so that individual terms, associated with variations of ΨGS 
with respect to its dependence with respect to a particular value of j' (through εj'(kj) and rj' ) can be treated as being 
independent from comparable variations involving a different value of j'.  Then, for fermions, or for bosons, 
individual contributions for each band (associated with the index j') can be identified.  As a consequence, using Eqs. 
A1-A3, it follows that it is possible to relate the average value of the velocity of any of the (indistinguishable) 
particles associated with all coordinates rj that possess wave-vector kj to the variation in band energy using, 

∫∫∫

∫∫∫ 










−











∂
∂

−
∂

∂

=
∂

∂

GS
*

GS
n

jB,F
GS'j

*
GSj

GS
'j

*
GS

'j

GS*
GS

n

j

j

j'j
jB,F

rd

)k(N
c

)r(Ae

rri
rd

m

k

)k(
)k(N

ΨΨ

ΨΨ
Ψ

ΨΨ
Ψ

ε
3

3

2
1 h

v
  , (A4a) 

where NF,B(kj) =0, 1 or 2 for fermions (depending on whether or not 0, 1 or 2 spins occupy the band), and for 

bosons, N
jkn≡

F,B(kj)=0, or NB, where Nb=number of bosons.  In either case, since a common factor of NF,B(kj) appears 
on both sides of Eq. A4a, in the independent particle limit (as in conventional band theory), in which ΨGS can be 
written in non-bulk regions, in terms of a sum of (suitably) symmetrized (or anti-symmetrized) products of 
individual wave functions φε(k), it follows that 
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where each single particle wave function has been normalized ( ) to the region (of 

integration) that is used in the evaluation of the right-side (R.S.) of Eq. A4b. 

123 =∫∫∫ ||rd )k(j j'jεφ

These results, which are exact for the GS at T=0, in the bulk, are the many-body generalization (for 
charged particles in finite crystals) of the expression that relates the gradient of the eigenvalue ε(ki) with respect to 
wave-vector ki to the local velocity (and current) in the bulk region.  This relationship, in turn, is used in the semi-
classical theory of conduction (which is traditionally derived, using a heuristic approach based on �independent 
quasi-particles�, associated with the semi-classical theory, in the limit of bands that are derived using infinitely 
periodically ordered solids).  Implicitly, the results apply for all charged particles (including protons), as in the 
conventional semi-classical theory.  But with the exception of hydrogen and its isotopes, the average current from 
particular bands involving protons and core electrons is entirely negligible.  Also, no net contribution to the current 
occurs when the summation over coordinates ri (on the L.S. of Eq. 22) and wave-vectors- ki (on the R.S) involves a 
filled band (which occurs when all values of ki in the First Brillouin Zone are included for a particular band).  As in 
conventional band theory, filled bands do not contribute to the current because ε(ki) is a periodic function, with 
respect to translations by a reciprocal lattice vector. 

In the semi-classical theory, the single particle relationship, associated with Eq. 22 (in which the many-
body wave function is constructed from exchange-symmetrized products of single particle wave functions), is used 
to derive particle fluxes, in which the perturbation V -V' is finite, on the R.S. of Eq. 15. Then, (implicitly) surface 
effects are accounted for through the minimization procedure associated with Eqs. A1-A3. This means the 
remaining terms (omitted from Eq. 15) in Eqs. A4(a,b), associated with extending the many-body state into surface 
regions, vanish.  In a T=0 state, in the absence of an external Electric Field (E), this can be justified using the 
asymptotic limit (alluded to above) in which both the charge and electrostatic field exponentially decay.  In 
particular, provided the range over which any changes associated with this exponential decay can be appreciable is 



considerably larger than the characteristic length of any unit cell, the effect of the decay can be treated using a 
slowly-varying (envelope) function that can be held constant during the integration over any particular integration in 
a unit cell outside the bulk region. Then, it follows that (since each integrand is periodic) the dependence of this 
envelope function on the flux or normalization, globally, in the numerator and denominator of Eqs. A4(a,b), appears 
as a portion of a common pre-factor of a single (but distinct) integral (associated with the flux or normalization) 
from a single unit cell.  As a consequence, in their most general form, Eqs. A4(a,b) hold, but how they apply 
requires that a particular form of coupling in the surface region be approximately valid.  In situations, where the 
bulk region remains neutral, and in regions near the bulk, when the change in charge, on the average, decreases in a 
smoothly varying fashion, that occurs over many unit cells, within any particular cell, as a consequence, V-V' can 
effectively be viewed as not being effected by the presence of the surface.  In this region of slowly-varying decay in 
charge and potential, from unit cell to unit cell, the net force that is applied at the boundaries of the solid can be 
averaged over many cells.  Then, over the surface region, V-V' can be approximated using a classical force, 
multiplied by the distance (associated with the surface region) where non-neutral forms of force apply.  In this limit, 
the applied force merely shifts the zero of energy.   

Thus, in this limit, to maintain charge neutrality, a net flux of charge can occur with respect to boundaries 
of the solid in which the imbalance in flux is associated with classically defined differences in E (associated with 
averaging the value of E over the entire solid) in regions (near surfaces and interfaces) where an imbalance in 
charge can occur.  In particular, always, at low T, net flux of all charged particles to and from the bulk region 
vanishes.  This can occur when equal amounts of charge enter and leave the bulk, in which the zero of momentum 
of the many-body state is allowed to shift, uniformly, and the only net force, acts on all of the particles uniformly.  
Then, effectively, a change in momentum at the boundary of the bulk leads to a perfectly rigid change in which all 
particles in the bulk move with a constant (fixed velocity) that is equivalent to a perfectly rigid form of interaction 
in which, effectively, all outside forces impart momentum directly to the center-of-mass of the solid. The associated 
shift is defined by the limit in which A and A' are different, non-uniform and non-periodic in the surface region but 
are required (on the average) to be uniformly constant in the bulk.  This leads to a uniform (but time dependent) 
shift in the zero of momentum of the bulk, as defined by its instantaneous reference frame, relative to a particular 
time, and by its possible coupling (through the vector potential and static electromagnetic fields).   

Since the bulk region is neutral, on the average, the value of its center of mass momentum 
Pcm,o=po=MbulkVcm,o,, where po is the average zero of momentum (as defined earlier), Mbulk is the total mass of the 
bulk, and Vcm,o is the absolute velocity of the bulk region.  But since neither Mbulk or Vcm,o can be measured (and 
neither quantity is  conserved) without  introducing external charge, it is only possible to relate Pcm,o, to the total 
center-of-mass momentum Pcm associated with both the bulk region (Pcm,o ) and non-bulk region (=Pcm,nb ) values of 
the momentum, using the relationship, Pcm= Pcm,o+ Pcm,nb, and to changes in the velocity Vcm of the center-of-mass of 
the solid.  In particular, in the absence of external electromagnetic fields (and external vector potentials), near the 
GS, provided the solid is neutral, on the average (with respect to individual unit cells), it follows that averaged over 
bulk and non-bulk regions, Pcm=MVcm = Pcm,nb+Pcm,o ≡ Pcm,nb+po ,where M=total mass of the solid. 

But at the boundaries of the bulk, a net accumulation of charge can occur, which means that although it is 
not possible to measure MbulkVcm,o directly, it is possible to impose the requirement that, instantaneously, as a 
function of time (as T 0), no net acceleration of the bulk relative to non-bulk region be allowed to take place.  

When this is true,  
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0
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) pd(P oocm, =
+

=
dMVcm
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, which means that 

dt
dP

dt
dPdp ocm,cmo =−= nb,

dt
.  

 Since there is no charge, on the average, in the bulk, it also follows that the requirement that 0dMVcm =
dt

 

instantaneously, as T->0, also applies both for the sum of forces that act independently either on (all) negatively or 
positively charged particles.  Also, because positive and negative charges respond to external fields by accelerating 
in opposite directions, the requirement that zero net flux of particles (or energy) occur at the boundaries of the bulk 
region implies that in the GS, the net currents from bulk and non-bulk regions, associated with positive and negative 

charges, separately vanish.  Then it is possible to define an instantaneous rate of change 
dt

odp of the zero of 

momentum, respectively, 
dtdt

j
oo dpdp

= , or 
dtdt

j'
oo dpdp

=  for positively or negatively charged particles in the bulk 

region.  For this reason, although it is not possible to determine, unambiguously, the value of the velocity of the 
center-of-mass Vcm,o  of the bulk region, it is possible to relate changes in the flux of each kind of (positively or 



negatively charged) particle (and the associated currents) that result in response to changes in applied fields, based 
on the assumption that the bulk region remains in its ground state.   

In particular, the resulting changes in flux occur through changes in Mbulk that result from the requirement 
that all changes in the bulk occur through rigid (Galilean) translations that only alter the many-body state of the GS 
by shifting the local zero of momentum of each coordinate (and total zero of momentum of the bulk).   The changes 
in momentum (and mass) can be inferred, using Gauss's law (which is required to define the boundaries of the bulk 
region, and of the entire solid), and the following requirements: 1.For each rigid shift (through an effective Galilean 

transformation) of the bulk, separate values of ∆po =∆t
dt

t
dt

j''
oo dpdp ∆=  accompany the shift in momentum.  (These 

values of ∆po have opposite sign for situations associated with positively charged particles, which occur when j��=j, 
as opposed to situations associated with negatively charged particles, which occur when j��=j�.) 2. Each value of ∆po 
(∆po=∆po

j or ∆po=∆po
j' , respectively for all positively or negatively charged particles) for each shift leads to a 

constant, uniform change of the vector potential in the bulk, and 3. The ground state, in bulk regions, is not altered 
by the sum of the two shifts, which means 4. The sum of externa1 forces F, associated with changes resulting from 
the two shifts, vanishes at the boundaries of the bulk region.  To determine ∆ P and ∆ P , it follows that in the 
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The fourth requirement is satisfied when with respect to the ground state, externally applied forces in non-
bulk regions are balanced in the same regions by existing forces. As a consequence, formally, 
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where v(xj) (=velocity of positively charged particles, as defined by Eq. 12), the only contributions to the 
integrations in the numerator occur from the non-bulk region (and its boundaries), Ho is the Hamiltonian, in the 
absence of outside perturbations,  and the expectation value associated with the commutator, <ΨGS|i[Ho,Pcm

j
,nb]|ΨGS> 

, does not vanish because it involves an integration over a finite, limited volume (the non-bulk region).  Also, here, 
and throughout, the notation ΨGS

j in the numerator of Eq. A6a, and the associated short-hand, notation -

 in the first line, and subsequently (after substituting Eq. A5 and using the definition associated with time 

evolution) in the second line, refers to evaluating the portion of the expectation value of -e/cA(x,t) in which 

the charge e
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j and the vector potential A and  momentum P are restricted to coordinates xnb,cm j, that involve positively 
charged particles.  In practice, this means that xj refers to a location where =|e|, and the dependence associated 

with changes in and changes in the electromagnetic fields, are included at locations where positively charged 

particles are allowed to couple to A, through overlap between Ψ
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Aej
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GS  and .  Eq. A6(a), and remaining 
equations describing the zero of momentum, as written above and below, apply for positively charged particles.  
They also can be used to determine the zero of momentum that applies when the coordinates  (associated with 

positively charged particles) are replaced with the comparable coordinates,  (associated with negatively charged 

particles) and each positive charge e  is replaced with a negative charge .   
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Because relative changes in Pcm alter the wave function globally (as in Eq.10), in establishing the zero of 
momentum (and velocity), changes involving the center-of-mass momentum in the non-bulk regions can be used to 

define comparable changes in the bulk region.  Specifically, when 0=
dt

dMV j
cm  (as in Eq. A6a), for the center-of-

mass (cm), it is possible to define a separate change in cm and force, associated with each positively or negatively 
charged particle ( where j=j for positively charged particles, and j=j� for negatively charged particles).  This means 

that 0=+==
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Also, from Eq.A4a, it follows that for all particles, the average value of the total velocity v(x) (as in Eq. A6a) of a 
particular kind of particle can be expressed, using 
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This relationship holds either for positively or negatively charged particles, and the sum over j involves all possible 
occupied and unoccupied band state eigenvalues (for each kind of particle):  It also follows from the definition of 
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But then when Eqs. A6d and A6c are substituted into Eq. A6b, separate summations involving kj occur on both 

sides of the resulting expression.  In particular, for each value of 
dt
dk j

ih  (from the summation on the R.S. of Eq. 

A6d) that appears on one-side of the resulting expression, a comparable term, of the form, 
(from the summation on the L.S. of Eq. A6c) appears on the opposite side of the 

expression.  Because all possible values of momentum (and overlap) are possible, each summation can involve a 
limited (but the same) number of terms.  Thus, for the equation to be valid, for arbitrary forms of occupation, it 
follows that the dependence on the local zero of momentum (through k) is systematically required to be balanced, 
term by term, on both sides of the equation.  This means it is possible to assign a local, time-dependent 

change
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=∆  for each component ki of the wave-vector, independently, for positive or negative charges.  

Then, using Eqs. A6a-d, it follows that for each value of the local zero of the wave-vector k, for each particle,  
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 As a consequence, a separate (positive or negative) shift ∆k of the local wave-vector zero occurs for each 
(positively or negatively charged) particle.  In each case, the magnitude of the shift is the same for each kind of 
particle for each value of k.  For the ground state in bulk regions, no net change in charge occurs.  Because some 
charge can leave the solid and because (in the presence of magnetic fields) the effects associated with the gradients 
of the band state eigenvalues are different for ions than electrons, for each value of k, ∆k is very different for 
positively or negatively charged particles.  Thus, both for ions and electrons relative to the surface (and to each 
other), effectively, the center-of-mass velocity (and momentum) of the Bulk can (and does) change.  As a function 

of time, this is equivalent to allowing all of the various wave-vectors to be shifted by 
h

)t(p∆± , based on  Eq. A7, 

in bulk regions.  (The positive charge in the prefactor of E is used for positive charges, and the negative sign is used 
otherwise.)  Then, when charge is free to flow into and away from the bulk region, a quasi-steady state can evolve, 



that can be described, based on the interpretation that each "particle" moves (in the sense that its average current is 

described by Eqs. A4(a,b)), while its wave-vector changes in time, from k=ko to
h

t)Bc/E(
ekk k

o
×∇+

±=
ε .  

The associated picture is a generalization of the semi-classical equations of motion (that are used in the 
associated theory of conductivity and transport).  A requirement for its success is that the bulk region remain neutral 
and a quasi-equilibrium be established, in which charge in non-bulk regions redistributes itself sufficiently rapidly 
that the value of t not become so large that the value of k is forced to be comparable to a reciprocal lattice vector G1.  
If this occurs, in fact, the zero of momentum of the bulk becomes sufficiently large that each wave-vector is shifted 
by the same finite, amount, G1/N.  In the associated effect, which is the basis of UmKlapp (or U-) processes, all 
charged particles of a particular kind instantly acquire the same, small (but finite) amount of momentum, and the 
bulk region, as a whole, recoils, relative to the surface. 
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