#### CHARACTERISTICS OF EXCESS HEAT IN Pd|D2O+D2SO4 ELECTROLYTIC CELLS MEASURED BY SEEBECK ENVELOPE CALORIMETRY

W.-S. Zhang

Institute of Chemistry, Chinese Academy of Sciences, P.O. Box 2709, Beijing 100190, China

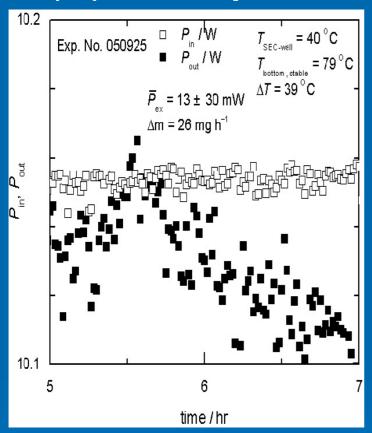
We have focused on the reproducibility of excess heat in Pd|D<sub>2</sub>O electrolytic cells for some years [1-3]. It was found that excess heats can be reproduced under proper procedure and excess heats occur instantly after electrolyzing for a few hours rather than several days or months. The most important characteristics of excess heat production are following points:

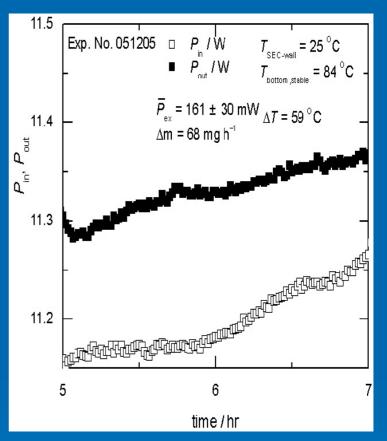
- (1) The pretreatment of palladium sample at high temperature is necessary.
- (2) Temperature increment during electrolysis is a key factor [2].
- (3) Noises of cell voltage decrease when excess heats occur during galvanostatic electrolysis at some time.

Experimental details will be reported in the conference.

- [1] W.-S. Zhang, J. Dash, Q. Wang: "Seebeck envelope calorimetry with a Pd|D<sub>2</sub>O+H<sub>2</sub>SO<sub>4</sub> electrolytic cell", Proc. ICCF12, Yokohama, Japan, Nov 27 to Dec 2, 2005, p. 86.
- [2] W.-S. Zhang, J. Dash: "Excess heat reproducibility and evidence of anomalous elements after electrolysis in Pd|D<sub>2</sub>O+H<sub>2</sub>SO<sub>4</sub> electrolytic cells", Proc. ICCF13, Dagomys, Sochi, Russia, June 25 to July 1, 2007. p. 202.
- [3] W.-S. Zhang, J. Dash, Z.-L. Zhang: "Construction of a Seebeck Envelope Calorimeter and reproducibility of excess heat", Proc. ICCF14, Washington DC, USA, Aug 8 to 10, 2008.

# Characteristics of excess heat in Pd|D<sub>2</sub>O+D<sub>2</sub>SO<sub>4</sub> electrolytic cells measured by Seebeck Envelope Calorimetry


Wu-Shou Zhang Institute of Chemistry, CAS, Beijing, China


- > 1. Introduction
- > 2. Experimental setup
- > 3. Calorimetric results
- >4. Conclusions

#### 1. Introduction

- What are key factors for reproducibility of excess heat?
- > (1) Temperature increment  $\Delta T$
- > (2) Pre-electrolysis

#### (1) Temperature increment





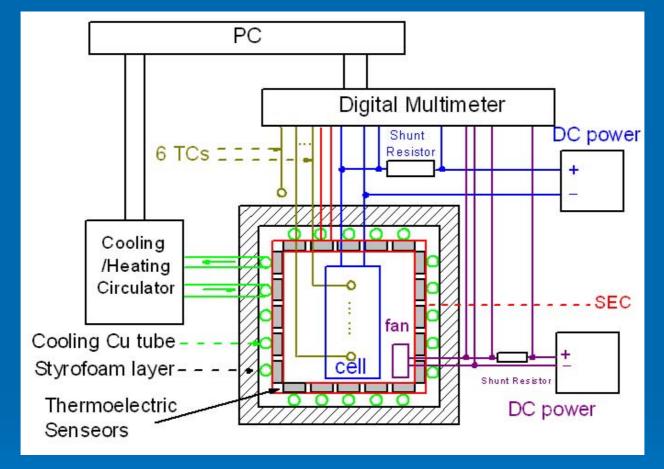
Pd (0.25×25×25 mm³). 3 A (0.24 A/cm²).  $Q_{ex} = 0.01 \pm 0.03$  kJ in 7.7 hr (Exp# 050925),  $Q_{ex} = 4.44 \pm 0.97$  kJ in 7.5 hr (Exp# 051205). Zhang & Dash, Proc. ICCF13, p. 202.

#### (2) Pre-electrolysis

2nd run gave more excess heat than that of 1st run:

| Pd |        | Run 1                | Run 2  |                      |
|----|--------|----------------------|--------|----------------------|
| #  | Exp. # | $P_{\rm ex}/{ m mW}$ | Exp. # | $P_{\rm ex}/{ m mW}$ |
| A  | 050101 | $33 \pm 13$          | 050103 | 198 ± 16             |
| C  | 060209 | 0                    | 060211 | $108 \pm 29$         |
| Е  | 051127 | 0                    | 051129 | $215 \pm 56$         |
| F1 | 051012 | $371 \pm 60$         | 051015 | $461 \pm 20$         |
| F2 | 051021 | $247 \pm 87$         | 051024 | $386 \pm 38$         |
| Н  | 060404 | 50 ± 7               | 060406 | 129 ± 14             |
| Н  | 060412 | $81 \pm 21$          | 060413 | $119 \pm 11$         |

Zhang & Dash, Proc. ICCF13, p. 202.


First run should be the activation process.

This process is intended utilized in excess heat reproducibility.

### 2. Experimental setup

- > 2.1. Calorimetric system
- > 2.2. Electrolytic Cell

#### 2.1. Calorimetric system



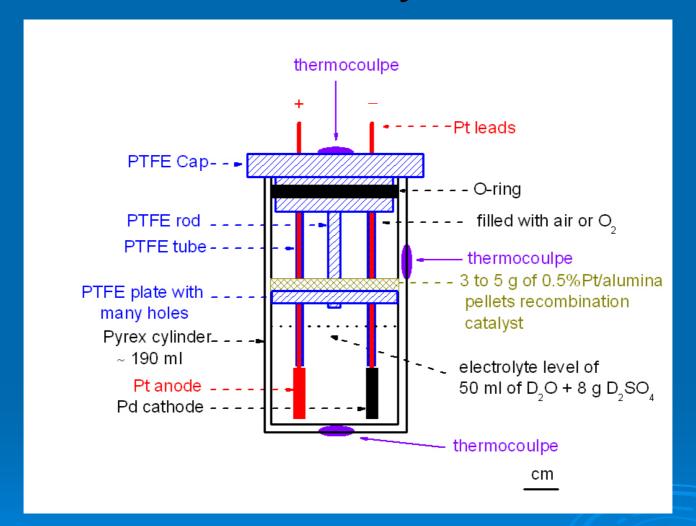

Schematic of calorimetry system Zhang, Dash & Zhang, Proc. ICCF14; Zhang, Acta Thermochim. (submitted); Zhang, China Patent. 200910085862



Photo of Seebeck Envelope Calorimeter (SEC)

Photo of system

#### 2.2. Electrolytic Cell



Schematic of Pd|D<sub>2</sub>O+D<sub>2</sub>SO<sub>4</sub> electrolytic cell  $(\phi_{in}4.2 \times 14 \text{ cm}^2)$ 









Photos of Pd #1 (0.25  $\times$  25  $\times$  25 mm<sup>2</sup>) before (left) and after (right) electrolysis.

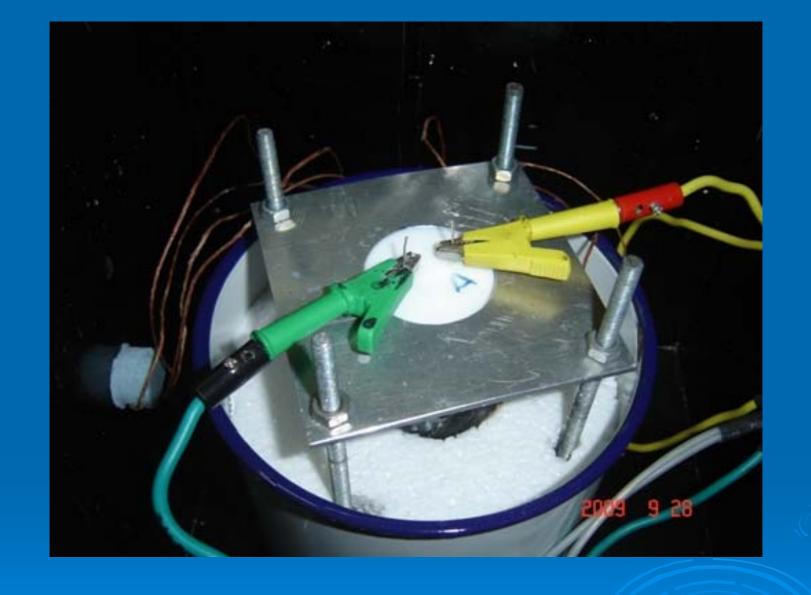
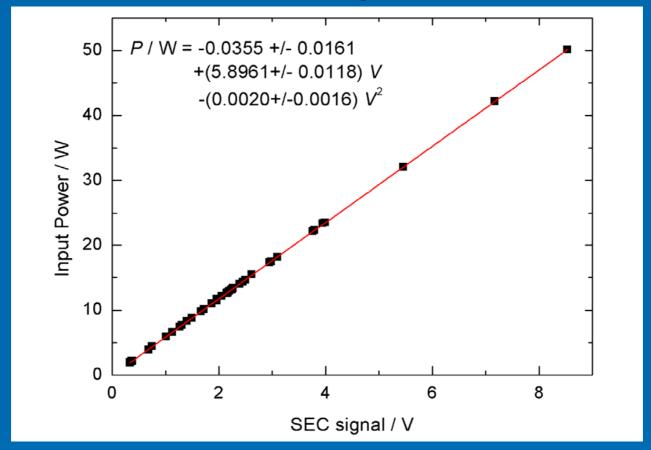



Photo of Pd|D<sub>2</sub>O cell in SEC

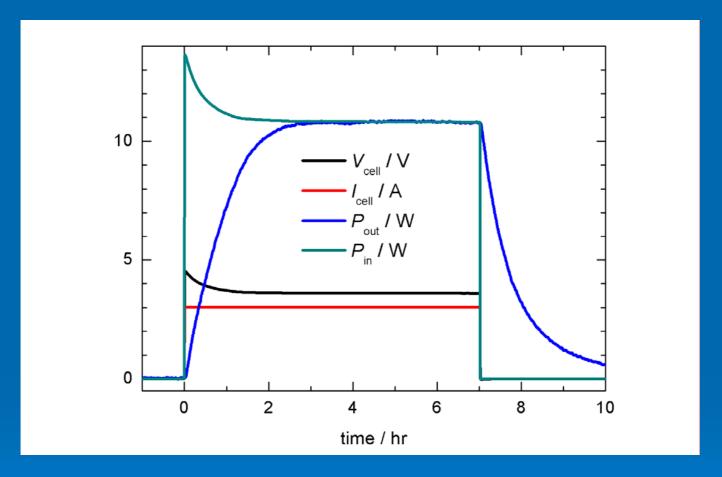

#### 3. Calorimetric Results

- > 3.1. Calibration
- > 3.2. Excess heat from Pd plate

## 3.1. Calibration and contrast experiments

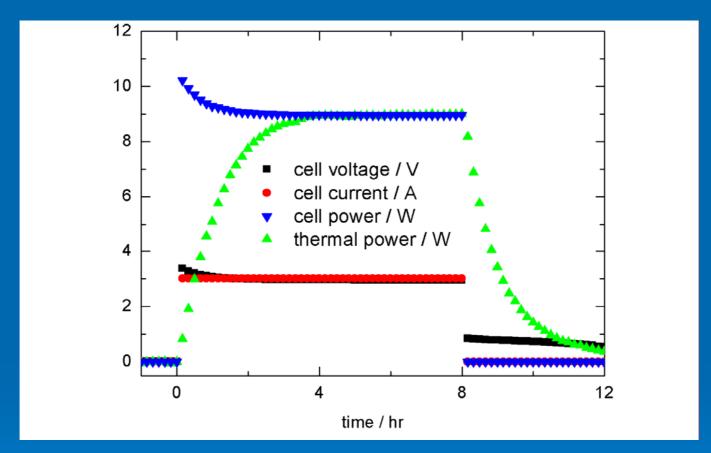
- 3.1.1. Calibration using resistance heater
- 3.1.2. Pt|D<sub>2</sub>O electrolysis
- 3.1.3. dead Pd|D<sub>2</sub>O electrolysis
- 3.1.4. Pd|H<sub>2</sub>O electrolysis

#### 3.1.1. Calibration using resistance heater



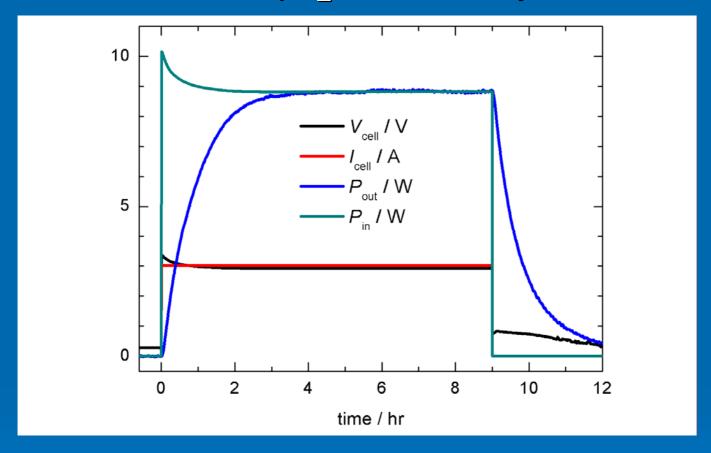

Input powers: 2 to 50 W (55 data)

Duration: Jul 2008 to Sep 2009


 $R^2 = 0.99997$ , Residual Sum of Squares = 0.1661, mean square = 0.0031.

#### 3.1.2. Pt|D<sub>2</sub>O electrolysis




Calorimetry of Pt|D<sub>2</sub>O system (Exp. #090824).  $P_{\rm in}$  = 10.819±0.007 W,  $P_{\rm ex}$  = 1±24 mW, 0.01% (4.5 to 7 hr);  $Q_{\rm in}$  = 278.20±0.06 kJ,  $Q_{\rm ex}$  = -0.29 ± 1.25 kJ, -0.10%; Including 84 mg of mass loss:  $Q_{\rm ex}$  = 0.95 ± 1.26 kJ, 0.34%.

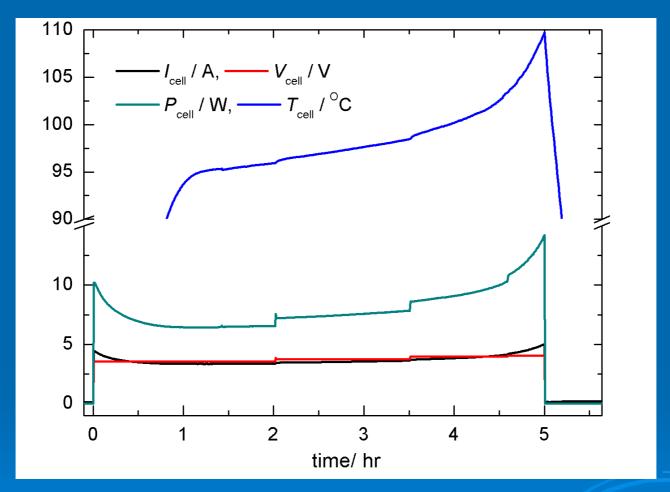
#### 3.1.3. dead Pd|D<sub>2</sub>O electrolysis



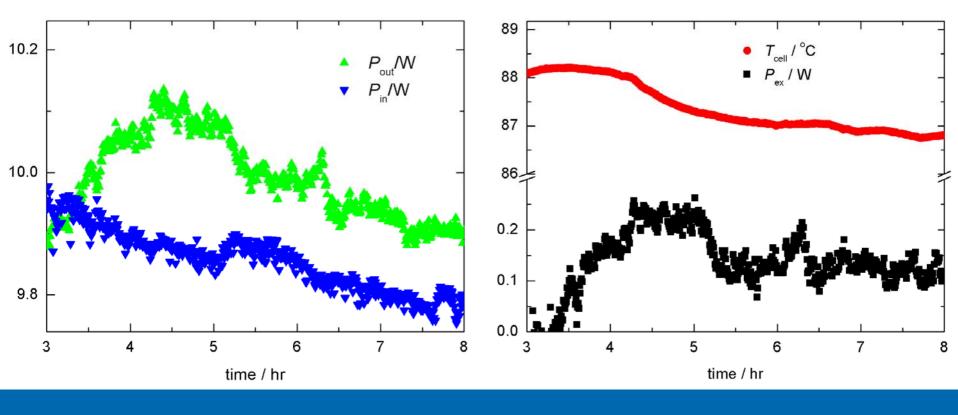
Calorimetry of dead Pd|D<sub>2</sub>O system (#090622).  $P_{\rm in}$  = 8.9556±0.0029 W,  $P_{\rm ex}$  = -0.4±22 mW, -0.004% (5 to 8 hr);  $Q_{\rm in}$  = 262.38±0.05 kJ,  $Q_{\rm ex}$  = -0.55 ± 0.90 kJ, -0.21%; Including 22 mg of mass loss:  $Q_{\rm ex}$  = -0.22 ± 0.90 kJ, -0.08%.

#### 3.1.4. Pd|H<sub>2</sub>O electrolysis

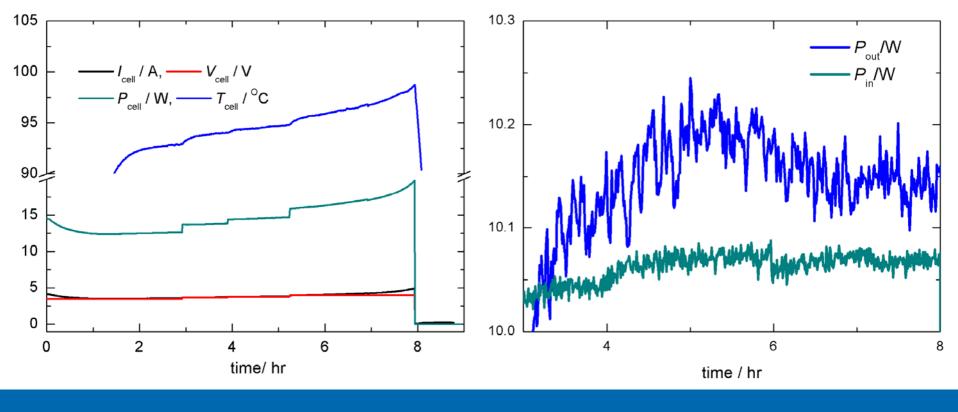



Calorimetry of Pd|H<sub>2</sub>O system (#091002).  $P_{\text{in}} = 8.824\pm0.004 \text{ W}, P_{\text{ex}} = 6\pm29 \text{ mW}, 0.07\% \text{ (4 to 9 hr);}$  $Q_{\text{in}} = 287.98\pm0.06 \text{ kJ}, Q_{\text{ex}} = -0.51 \pm 1.16 \text{ kJ}, -0.18\%;$ 

Including 38 mg of mass loss:  $Q_{ex} = 0.06 \pm 1.17 \text{ kJ}, 0.02\%.$ 


#### 3.2. Excess heat from Pd plate

- 3.2.1. Excess powers on pretreatments
- 3.2.2. Excess powers for different samples
- 3.2.3. Excess powers and cell's resistance


#### 3.2.1. Effects of pre-electrolysis on excess powers



Sample activation, pre-electrolysis in an open cell (Exp. # 081220). 3.5 A  $\times$  2 hr + 3.7 A  $\times$  1.5 hr + 3.9 A  $\times$  1 hr + 4 A  $\times$  0.5 hr.  $T_{\text{max}}$  = 110 °C.



Excess power after activation (Exp. # 081223). Pd#1, 3 A (0.24 A/cm<sup>2</sup>)× 8 hr,  $T_{\rm SEC}$  = 25.00 °C  $P_{\rm ex,max}$  = 0.220 ± 0.016 W (4.5 to 5 hr);  $P_{\rm ex,stable}$  = 0.120 ± 0.018 W (7 to 8 hr).  $Q_{\rm ex}$  = 2.46 ± 0.33 kJ.



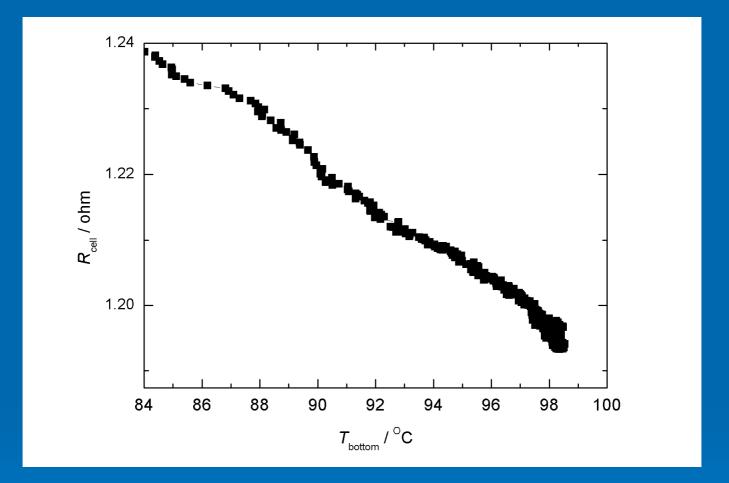
Left: Sample activation, pre-electrolysis in an open cell (Exp. # 090521). Pd#2, 3.5 A × 3 hr + 3.7 A × 1 hr + 3.9 A × 1.3 hr + 4 A × 2.7 hr.  $T_{\text{max}}$  = 99 °C. Right: Excess power after activation (Exp. #090525). Pd#2, 3 A (0.24 A/cm2) × 8 hr,  $T_{\text{SEC}}$  = 25.00 °C,  $P_{\text{ex}}$  = 0.120 ± 0.020 W (5 to 6 hr).

#### 3.2.2. Excess powers for different samples

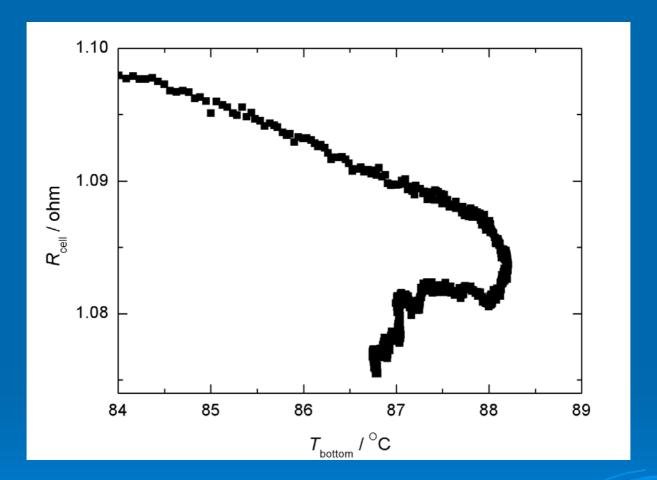
#### Summary of different Pd samples

| Pd# | size/mm <sup>3</sup>       | P <sub>ex,max</sub><br>/mW | Reproducibilit<br>y | Sample source                                     |  |
|-----|----------------------------|----------------------------|---------------------|---------------------------------------------------|--|
| 1   | $0.25 \times 25 \times 25$ | 220 ± 16                   | 21/35               | Alfa Aesar, cold rolled,<br>Provided by John Dash |  |
| 2   | $0.25 \times 25 \times 25$ | $120\pm20$                 | 6/7                 |                                                   |  |
| 3   | $0.05 \times 11 \times 31$ | 0                          | 0/3                 | GRINM, Beijing, cold rolled                       |  |
| 4   | $0.50 \times 10 \times 30$ | 0                          | 0/5                 | Provided by D.L. Wang                             |  |

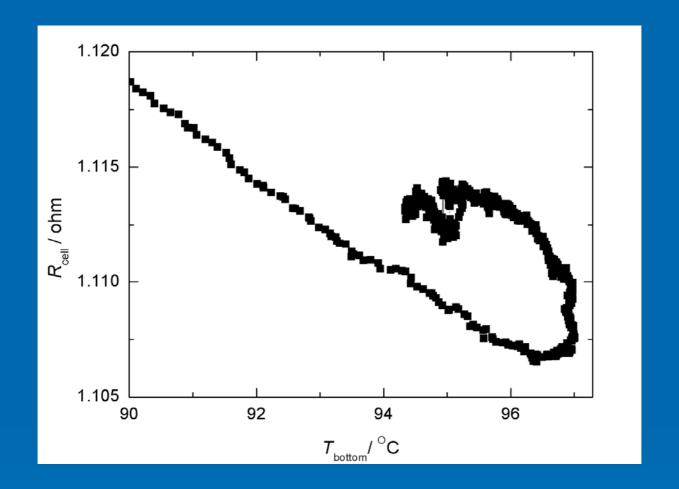
### 3.2.3. Excess powers and cell's resistance


- (1) R vs. T (no excess heat)
- (2) R vs. T (excess heat)

R = cell's resistance


T = cell's temperature




> (1a) R vs. T without excess power produced (Pd#1, Exp. #090902,  $P_{\rm ex} = -15 \pm 25$  mW).



> (1b) R vs. T without excess power produced (Pt cathode,  $P_{ex} = 1\pm24$  mW, Exp. #090824).



ightharpoonup (2b) R vs. T with excess power produced (Pd#1, Exp. #081223,  $P_{\rm ex}$  = 0.220  $\pm$  0.016 W).



(2b) R vs. T with excess power produced (Pd#2, Exp. #090525,  $P_{\rm ex}$  = 0.120  $\pm$  0.020 W).

#### 4. Conclusions

- > (1) Clear evidence of excess heat in Pd|D<sub>2</sub>O + D<sub>2</sub>SO<sub>4</sub> electrolytic system.
- (2) Pre-electrolysis in open cells is an easy way to reproduce excess heat in subsequent electrolysis in closed cells.
- (3) Cell's resistances change irreversible with cell's temperature when excess heats appear.

#### Acknowledgments

- Prof. J. Dash, Z.-L. Zhang
- NSFC 20673129 & 20973185
- 973 Program 2009CB226113

### Thank you