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A gigantic neutron burst of (1-2) × 106 n/s has been detected from deuterated Pd plates with heterostructures set in a 

vacuum chamber. An explosive release of D2 gas, biaxial bending of all the samples, and excess heat evolution were also 
observed at the same time. It has been concluded that these phenomena are caused by the cooperative production of D 
accumulation layers at Pd surfaces due to controlled out-diffusion of D-atoms. 
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Since Jones et al.1} and Fleischmann and Pons2) reported that nuclear fusion occurred at room temperature in Pd or Ti 
cathodes during the electrolysis of D2O, much effort has been made to reinvestigate the possibility of the electrolytically 
induced cold fusion in condensed matter.3-12) Spontaneous neutron emission due to the fusion of D-atoms has also been 
observed during the process of soaking Ti powder into D2 gas up to 40 atm, followed by cooling with liquid nitrogen and 
heating.13) More recently, it has been reported that D+ ions accelerated to more than 1 keV caused fusion at a high rate in 
deuterated Ti14) or Pd.15) Although the �high-energy� nuclear fusion in solids can be well understood within the current theory 
because the fusion rate at 1 keV has been calculated to be more than 1013 times larger than that at 300 eV or less,* the 
observed neutron emission without application of high voltages15) has given evidence of cold nuclear fusion. In this letter, we 
report a new technique for inducing �low-energy� nuclear fusion at room temperature in solids. By making use of this 
technique, we have observed a gigantic neutron burst and, at the same time, an explosive release of D2 gas from deuterated Pd 
(Pd:D) plates as well as a biaxial bending of the samples. We have also detected excess heat evolution. 

The key process in the present study is the formation of D accumulation layers at solid surfaces by controlling the D-atom 
out-diffusive transport with hetrostructures. Namely, one of the surfaces of a Pd:D (α-phase) substrate is covered with a thick 
Au-film in order to prevent the leakage of D-atoms from this side. In the present experiment, the substrates were obtained by 
immersing annealed Pd plates (99.9%; thickness =1.0 mm) into D2 gas (99.9%; 0.5 atm) for 24 hours. The other surface is 
covered with a thin film having a diffusion constant of D less than Pd. This layer appropriately controls the out-diffusion of 
D-atoms passing through this interface. In the present work, we used a film with a thickness of less than 100 Ǻ containing 
mainly Mn and O, which we call Mn-O film in this letter. Thus, the D accumulation layer can be formed at the interface 
during the out-diffusion processes of D-atoms by decreasing the pressure of ambient D2 gas. It will be shown later that the 
formation of the β-phase layer can provide cooperative feedback to cause further accumulation of D-atoms. 

As soon as the sample preparation was completed, we set three of these samples in another stainless-steel chamber, as 
schematically shown in Fig. 1, and evacuated it. Neutrons were counted by using a BF3 detector (Aloka Co., Ltd: TPS-451S) 
set at 38cm from the samples. The leak detector (Varian Ltd: 925-40), monitoring gases of mass numbers less than 6, was also 
set in the vacuum chamber. About three hours after pumping, we observed the virtually simultaneous occurrence of the 
following events: (1) neutron emission of 0.1-0.2 mSv/h for 2-3 seconds, (2) explosive release of gas from the samples, and 
(3) biaxial bending of all the samples due to uniform expansion of the surfaces with a thin Mn-O film (see Fig. 2). When the 
samples were taken out from the chamber, we found an increase in the temperature of about 50°C on the stainless-steel 
sample holder as well as on all three samples. We also observed that the color of Au deposited on one of the surfaces was lost, 
which indicated alloying of Au and Pd. Thus, it is supposed that the temperature on the samples were temporarily increased to 
above the Au-Pd alloying point (1064°C).16) 

                                                           
* J. Rafelski, M. Gajda, D. Harley and S. E. Jones: private communication. 



 

Fig. 1.    Schematic diagram of the measurement apparatus. 

 

In order to check the reproducibility on the same samples, we again immersed these samples into D2 gas in the same 
chamber, and then evacuated it. About 150 seconds after the start of pumping, we observed a second gigantic neutron burst of 
0.06-0.09 mSv/h for 1-2 seconds followed by an explosive release of gas. After the pressure in the chamber was increased up 
to 1 atm with N2, we again evacuated the chamber. Almost the same neutron emission and gas release were again observed 
about 150 seconds after the start of pumping. The second and third neutron bursts were recorded by the analog output of the 
neutron detector and are shown in Fig. 3. 

We performed approximately 20 experiments with the same procedure as denoted above. Neither of the above-mentioned 
events was observed in any of those experiments. We also performed a few experiments replacing D2-gas by H2-gas and 
observed neither explosive gas release nor neutron emission. However, this does not mean that a mechanism responsible for 
the observed phenomena other than the fusion reaction itself does not exist in Pd:H systems, because the production of ac-
cumulation layers followed by biaxial bending of the samples is expected to be almost independent of the mass number of the 
hydrogen-isotope. 

Here, it must be noted that all high-voltage (>200 V) power sources in the laboratory, except for the ion vacuum gauge, 
were off when the first, second and third neutron emissions described above were detected. We used batteries as the power 
source of the neutron detectors throughout the present experiment, and continuously confirmed the absence of a noise on the 
analog output of the detectors, for a few months since the beginning of the experiment. It must further be noted that, in order 
to calibrate the BF3 neutron detector, we performed D+-ion implantation into Pd:D at 50 to 200 keV just after the first and 
second neutron emissions. It was found that the measured neutron flux coincides with that measured by another neutron 
detector (Nuclear Enterprises Ltd.: NM2B) at various acceleration energies and dose rates. 

Provided that event (1) results from the usual D-D fusion reaction, the energy of emitted neutrons is 2.5 MeV and/or 14.1 
MeV. Then, the neutron dose of 0.1 mSv/h is equivalent to the neutron flux of 72 n/(cm2·s).17) Thus, the amplitude of the first 
neutron emission is roughly evaluated to be (1-2) × 106 n/s by assuming the neutron emission from the samples to be almost 
independent of the angle. The amplitude of the second and third emissions is equivalent to (0.6-0.9) × 106 n/s. The neutron 
flux of the first emission is (2.5-5) × 106 times larger than that reported by Jones et al.1} and as much as 25-50 times larger 
than that reported by Fleischmann and Pons.2) Here, it is noted that the background level for neutron detection was ~(1-3) × 
10-9 Sv/h (~10-3 n/(cm2·s)) throughout the present investigation. 



 

Fig. 2. A 3.0 cm × 3.0 cm palladium sample (thickness =1.0 mm) after the third neutron burst and explosive release of 
D2 gas. Top side is Au-coated surface at which alloying occurred after the first neutron emission. 

 

Fig. 3. The second and third neutron emissions as a function of time. The tailing behaviour after the neutron is 
detected is of no significance; it is only a characteristic of the analog output of the device. 

 

Furthermore, it can be considered that the gas released in event (2) is D2 which was dissolved in the Pd samples, because 
atoms or molecules with a mass number of 4 were detected in great quantity in the residual gas. Here, it is noted that atoms or 
molecules with the mass number of 3 were slightly detected. Since the leakage of D-atoms from Au-coated surfaces can be 
ignored, event (2) is thought to be caused mainly by explosive out-diffusion of D-atoms through the interface between Pd and 
a thin Mn-O film. Besides, the reason for the sudden excess heat production is still not clear. It may be strongly correlated to 
the decomposition of PdDx (x > 0.6) and subsequent release of D2 gas, as argued by Pauling,18) or to the lattice rearrangement 
due to the plastic deformation, as described by event (3). 

Now let us consider the origin of the enhancement of the nuclear fusion rate observed in the present experiment. 
Kondo,19) Sun and Tomanek20) and Wang et al.21} have theoretically shown that the separation between hydrogen atoms is 
much larger than the value required for a significant fusion rate in the equilibrium. Therefore it is believed that the present 



observation should result from some nonequilibrium processes, for instance, a rapid change in the configuration of host Pd-
atoms or defects so as to bring D-atoms much closer to each other than in the equilibrium sites. 

One possibility for this is the �fracture� mechanism;22-25) that is, an electrostatic field induced at the fracture or crack may 
accelerate the D+-ions and cause nuclear fusion. Another possible mechanism is the host-lattice rearrangement due to sudden 
plastic deformation followed by dynamical �musical-chairs� motions of D-atoms as follows: 

During the diffusion process, D-atoms are accumulated at the interface and form a thin layer of β-phase PdDx (0.6<x< 
1.0), or an oversaturation phase with x larger than 1. This formation increases the lattice constant at this layer, and then gives 
a biaxial strain to the samples. The strain, in turn, enhances the out-diffusion of D-atoms to the same side of the surfaces 
(Gorsky effect). Therefore, these effects can give a cooperative cycle of positive feedback to increase the D concentration at 
that side of Pd surfaces.* The resulting catastrophic increase in the strain due to the accumulation of D-atoms finally produces 
a plastic deformation in the sample plates, as in event (3), and causes each host Pd-atom to rearrange rapidly. As a 
consequence, D-atoms are forced to move dynamically to attain new potential minima. In fact, the X-ray analysis for the 
samples after the third neutron emission has revealed that there were considerable degradations of Pd crystals without the β-
phase at the expanded surfaces, while the Au-coated surfaces had no degradation and contained a slight amount of β-phase. 

Here, we will conjecture that the rapid rearrangement of Pd-atoms can greatly increase the potential energy of D-atoms, 
by showing a simple example. Figure 4 indicates the calculated contour map of the empirical potential26) for the H-atom in Pd. 
As shown in Fig. 4(a), both the octahedral (O)-sites and the tetrahedral (T)-sites, whose numbers are, respectively, 1 and 2 for 
one Pd-atom, give local minima without strain. As the biaxial strain parallel to the (110) plane is increased, the O-sites tend to 
become saddle points and no longer offer stable sites to hydrogen atoms, as shown in Fig. 4(b). In this case, the displaced T-
sites become new local minima. Within such elastic deformation, it cannot be expected that D-atoms, which could have 
moved from the O-sites to the displaced T-sites, obtain energy high enough to give a high fusion reaction. However, at the 
very moment of plastic deformation, the Pd-atom rearrangement due to the production of defects can increase the potential 
magnitude at the displaced T-sites to the order of 102-3 eV, as schematically shown in Fig. 4(c) for the simplest defect (a single 
vacancy). It can be easily shown that this also holds for more complex defects such as edge or screw dislocations. Here, it 
must be noted that the number of potential minima can be decreased for any case. Therefore, at this time, the probability that 
D-atoms having the kinetic energy of the order of 102-3 eV collide with each other will be increased significantly. More 
detailed calculations will be necessary to check the validity of the proposed model. 

                                                           
* The difficulty in reproducing the present experiment may therefore be due to the fact that the cooperative production of D 
accumulation layers at Pd surfaces critically depends on the characteristics of the surface barriers. 

 



 

Fig. 4. Potential contour for the H-atom in the Pd (110) plane (a) without the strain, (b) with the biaxial strain 
(exx=eyy=9%) and (c) with a vacancy (VPd) and nearest-neighbor rearrangement (bond-shrink by 25%) as well as the 
biaxial strain, where the <110> direction is set to the z-axis and the contour step is 50 meV (200 meV for Fig. 4(c)). 
Shaded areas have energies larger than 500 meV (2 eV for Fig. 4(c)) from the potential bottom, and the open circles 
represent the local minima of the potential. 
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