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Bose-Einstein condensation (BEC) is one of the candidates to induce the nuclear fusions in solids, 
because d-d repulsions are screened by conduction electrons and deuterons can be condensed at 
defects  in solids. In this work, d-d fusion rate in Pd induced by BEC is estimated. The equivalent 
linear two-body method, which is based on an approximate reduction of many-body problems by 
variational principle, is used for the calculation. Thomas-Fermi and non-linear screening potentials 
are used as d-d interactions.  

1 Introduction 

Using equivalent linear two-body (ELTB) method to the many-body problems of charged 
bosons trapped in an ion trap 1, Y.E.Kim and A.L.Zubarev 2  derived the ground-state wave 
function and the nucleus-nucleus fusion rate. In this work, Kim-Zubarev theory is modified 
in the following two points. Firstly, vacancies in solid are regarded as harmonic ion traps 
and the frequency of this potential is estimated by using spherical approximation. The ELTB 
solution is obtained numerically and also the rate of d-d nuclear fusion in Pd lattice defect is 
obtained. Secondly, the critical temperature of this phenomenon is introduced. 

2 Application of Kim-Zubarev Method to the Phenomenon in Solids 

In Kim-Zubarev method, an isotropic harmonic potential is used for the ion trap 
potential. Then the Hamiltonian of the system including N charged particle is  
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where  is the position of the particle. Using ELTB method, the ground state of this many-
body problem is written as  
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The wave function φ  in eq.(2) satisfies  
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The fourth term is the translated form of the summation  v( )i ji j<
| − |∑ r r  in eq.(1)  into ρ 

space by  
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Using  mωx r= h  and 2Eε ω= /h , eq.(4) is rewritten as  
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where α is the fine structure constant.  
Now the application of Kim-Zubarev method to the phenomenon in solid is shown here. 

In eqs.(4) and (6), harmonic term is the electro magnetically induced potential in the ion trap 
device. 1 In crystalline solids, this term corresponds to the interaction between host ions and 
impurity deuterons. The Hamiltonian of this system is written as  
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where Rj  is the Bravais lattice vector  and Z is the effective charge of a host ion. By intuitive 
estimation, the second term in eq.(8) is approximately harmonic at the center of the defects 
in the crystalline solids. This can be explained as following. The i-th component of the second 
term in eq.(8) can be expanded into spherical harmonics as  
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If this is approximately spherical function, dominant term in the expansion is the l m  
component, which is written as  
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Therefore, if we define ω  as  
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the second term in eq.(8) becomes 21
2onstant i imω+ 2c ∑ r  for small Kr. This means that 

transformed form of the second term in eq.(8) into ρ space is similar to the third term in 
eq.(4). On the other hand, transformed form of the third term in eq.(8) into ρ space is not 
similar to the fourth term in eq.(4) because of the existence of the screening factor 

. If we transform eq.(8) into x space, it is written as  exp( )i jk− | − |r r
2
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where  is a screening function. For Thomas-Fermi potential it is given by  f

2 3 4

0

2
( ) 3( 1) sin cos exp sinTF

Nf x N d k x
m

π

θ θ θ
ω

− θ= − −
 
 
 ∫ h

.            (13) 



3 Non-Linear Screening  Potential 

It is well known that deuterons provide very strong potentials to the electron gas. This 
effect is introduced by using the density functional formalism of Hohenberg-Kohn-Sham.3,4 
From the variational principle, they have derived the one body equation;  
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where Φ and Vxc are electrostatic and exchange-correlation potential, respectively. From the 
self consistent solutions of eq.(14), the density of the non-linear screening cloud induced 
around a deuteron in the electron gas can be obtained. The non-linear screening d-d 
interaction is obtained by considering the change in energy due to the embedding of two 
deuterons in electron gas. It is written as  
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where , n� vs  and φxc  are deviation of electron density from mean density , induced static 
potential and exchange-correlation potential, respectively. They are defined as  
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where  is the position of a deuteron and εxc is the exchange-correlation energy per one 
electron. The calculated results of d-d pair potential using non-linear and Thomas-Fermi 
screenings are plotted in Figure 1.  
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Figure1.  Screened d-d pair potential 

 
The screening function for non-linear screening potential VNL is given by  
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4 Nuclear Reaction Rate 

The ELTB solution gives the nuclear reaction rate by 
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 is imaginary part of Fermi pseudopotential .2  The short-range 
interactions of nuclear forces between two bose nuclei are introduced by using δ function. 
The constant π= h is determined by  the S factor of the nuclear reaction between two 
nuclei. If the ELTB solution is obtained, the critical temperature of BEC is estimated by  
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where n is the number density of bose particles. The probability of the ground-state 
occupation is given by  Ω=1-(T/Tc)2/3  for T<Tc. If the ground state occupation is accounted, 
the fusion rate is given by RΩ.  

5 Results and Discussions 

In this work, ELTB solutions for N deuterons trapped in Pd defects  have been obtained, 
and d-d nuclear reaction rate has been estimated. The calculations were performed within 
the following conditions. (a) The octahedral void constructed by 6 vacancies (VacO) is 
adopted as an ion trap in solid. The radius Rv  is 3.37 Å。The frequency ω  is 0.86x1014sec-1. 
(b) In eq.(11), the convergences of the lattice summations are kept to be smaller than 1%. (c) 
Thomas-Fermi and non-linear screening  potentials are used to describe d-d interactions. 
The screening constant in eq.(11) is 2/(1st NN distance). (d) The effective charge of a host Pd 
is one. (e) The S factor is 110kevb. This is consistent with Kim and Zubarev 2.  

The ELTB solutions are plotted in Figures 2 and 3. The results for nuclear reaction rates 
are given in Table 1. In eq.(3), if all the particles exist at the same radial component r, ρ 
would become N r . Therefore, if a position of a sharp peak is smaller than N Rv , where Rv 
is the radius of the defect, the condensed deuterons are trapped in the defect. These values 
are also given in Table 1. Seeing the ELTB ground state solutions in Figures 2 and 3, sharp 
peak exists. For the non-linear screening in Figure 3, the peak exists in the negative region 
of the total potential. The peak position in Figure 3 is smaller than that in Figure 2.  They 
are the results from the difference between two potentials plotted in Figure 1. Seeing 
Table1, positions of the sharp peak are completely included in the defects. For Thomas-
Fermi screening, Tc’s are lower than the room temperature. In contrast to them, for non-
linear screening, they are higher than room temperature. Nuclear reaction rates are 
extremely high. If a nuclear fusion happens, immediately temperature becomes higher than 
Tc. Then Ω becomes zero. And the reaction will be stopped. These results lead us to the 
conclusion that BEC of condensed deuterons trapped in the Pd defect induces cold and calm 
fusion. 

 



Figure 2.  The ELTB solution for the system including 5 deuterons in VacO in fcc Pd. Thomas-Fermi screening potential 
is used as the d-d interaction. The nondimensional quantity x is defined as mωx r= h , where 14 10.86 10 secω −

×= . The 
screening constant in eq.(13) is defined as k=1/(2Rdd) , where Rdd (=0.74Å) is the d-d separation of D2 molecule. The solid 
line means the ELTB solution. The dashed lines mean each potential in eq.(12) normalized by ε.   

 
Figure 3.   The ELTB solution for the system including 5 deuterons in VacO in fcc Pd. Non-linear screening potential is 
used for the d-d interaction. The nondimensional quantity x is defined as mωx ρ= h , where 14 10.86 10 secω −

×= . The 

solid line means the ELTB solution. The dashed lines mean each potential in eq.(12) normalized by ε . 
 
 

 
Table 1.  Nuclear reaction rates as a function of N for trapped deuterons in VacO in Pd.  

 
 Thomas-Fermi screening  non-linear screening   

N  vN R  maxρ  ρ2  cT  R  maxρ  ρ2  cT  R  
3 5.83 3.01 3.15  49 1.8 1.13 1.21  256 33.7  
4 6.74 3.93 4.07  55 2.8 1.37 1.45  328 66.2  
5 7.53 4.78 4.92  62 3.9 1.58 1.66  402 108.2  
6 8.25 5.58 5.72  69 5.1 1.77 1.85  478 159.7  
7 8.91 6.34 6.48  75 6.4 1.95 2.02  556 220.7  

N :     the number of the trapped deuterons              Rv :  radius of the defect [Å] 
ρmax :  position of a peak in ELTB solution [Å]          Tc :  critical temp. of BEC [K] 
ρ2 :      position of the right side foot of the peak [Å]  R :  nuclear reaction rate [107sec-1] 
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