

CMNS Research at SRI

Francis L. Tanzella Jianer Bao Michael C. H. McKubre

SRI International, Menlo Park, CA USA

Presented at the International Low Energy Nuclear Reactions Symposium, ILENRS-12 Williamsburg, Virginia July 2, 2012

FPE Experiments, Electrochemistry and Calorimetry

In the beginning....

Fleischmann and Pons early results

S. Pons, M. Fleischmann, C. Walling and J. Simpson International Patent Publication No. 90/10935 (1990)

Cold Fusion Now 2/4/12 http://coldfusionnow.org/?p=12291 *"This result, by itself, with no more explanation really, is sufficient – if you believe Martin Fleischmann – to convince you that there is a real thermal (anomalous heat) effect in the deuterium-palladium system." -* Michael McKubre, SRI, 10/11/11

The Claim....

Deuterium, Electrochemically inserted into Palladium to a sufficient degree Revealed a source of heat (thermal energy) 100 eV – 20 keV inconsistent with known Chemical Energy sources 0.1 – 3 eV or lattice energy storage effects. < 0.3 eV

If true....

there must be another energy source. Fusion? Other Nuclear? Zero Point?? Something more exotic???

Three Major Parts of the Field Now

- Electrochemical loading of Deuterons into Palladium
 - The initial Fleischmann-Pons approach [FPE]
 - Most work in the field has been in this class
 - 90% of the effort at SRI has been directed to this
- Gas loading of Deuterons into Palladium
 - Les Case "nano"-Pd on C
 - Arata-Zhang combined electrochemistry and gas loading
- Gas loading of Protons (and D) into Nickel (and other metals)
 - Work began by Piantelli in early 1990s
 - Recent results at SRI

Loading Cell and Reactions

Wires:

1 – 3 mm in diameter3 – 5 cm in length1M LiOD Electrolyte

SRI Quartz Calorimeter and Degree of Loading (DoL) Cell

SRI Labyrinth (L and M) Calorimeter and Cell

<u>Accuracy</u>: ±0.35% <u>Operation</u>: 100 mW – 30W <u>Stability</u>: > 1000 hours

SRI >100,000 Hours of Precision Calorimetry using this and other Calorimeters

DoE Review 2004

A Predictive Equation

Necessary but Not Sufficient....

- Necessary conditions: Maintain High <u>Average</u> D/Pd Ratio For times >> 20-50 × $\tau_{D/D}$ At electrolytic i >250-500mA cm⁻² With an imposed D Flux
- Heat correlated with:
 - Electrochemical current or current density
 - D/Pd loading (bulk average measurement)
 - V_{ref.} surface potential
 - Pd metallurgy (ENEA Frascati)
 - Laser stimulus (single and double)
- For 1mm diameter Pd wire cathodes:
 - $P_{xs} = M (x-x^{\circ})^2 (i-i^{\circ}) \frac{\partial x}{\partial t}$

x° =0.84-0.88, i° =250-425mA cm⁻², t° >200 $\tau_{D/D}$

(Loading)

(Initiation) (Activation) (Disequilibrium)

"Achieve High Maximum D/Pd Ratio (Loading)"

Some open questions for the FPE

- Energy Densities measured >20,000 times Chemistry What (if anything) limits the Power?
- The Effect requires: Loading, Flux, Stimulation
 - [How] Can we simultaneously achieve Loading and Flux? [How] Can we decouple Loading and Stimulation?
- FPE experiments take weeks or months to complete
 - How can we learn faster?
 - Looking for a "Lab Rat" experiment that is:
 - ➢ Repeatable
 - ➢Rapid
 - ➤Unambiguous

Axial current stimulus

*DeNinno, Scaramuzzi, et al.:

- \blacktriangleright Axial current through PdD_x yields high loading and generates excess power
- ICCF8 Conference Proceedings, 70, 47 (2000)

♦ Mengoli *et al.*:

- > Axial current through PdD_x increases loading and gives nuclear effects (*i. e.* n^0)
- Nuovo Cimento A, 108A, 1187 (1995)

∻Celani *et al.*:

- Microsecond pulse electrolysis yields excess power
- > Electromigration leads to high loading and yields excess power
- Fusion Technology, 29, 398 (1996)

☆ Tripodi *et al.*:

- > Low concentration electrolyte (high electrolytic and axial voltage) leads to high loading
- > In situ electrodeposition of base metal holds high loading ex situ
- > Further electrolysis (including axial current) yields excess power and HT Superconductors
- Physics Letters A, 276, 122 (2000)

Background: Exploding Wire Effects

* <u>Nairne</u>

"Electrical Experiments by Mr. Edward Nairne, of London,
Mathematical Instrument-Maker, Made with a Machine of His Own
Workmanship, a Description of Which is Prefixed", Phil. Trans. 64,
79-89 (1774)

∻ <u>Faraday</u>

- ➤ High current through thin wires can cause the wires to "explode"
- > Exploding wires can yield very fine, pure metal powders
- Philos. Trans. Royal Society London, 147, 145 (1857)

*Chace and Moore

- Proceedings of the Conferences on the Exploding Wire
- Phenomenon, 1959 and 1961

*<u>Hypothesis</u>

> Fast, high current "exploding" of thin, highly loaded PdD_x wires can stimulate excess heat effects

Procedure:

* <u>Electrochemically load D or H to high levels in fine wires</u>

≻Pd, Ni, Ag

- Co-deposit additional loaded metal]
- * Seal loading with Hg
- * <u>Make electrical connections for axial current flow</u>
- * Transfer to Liquid N₂
- ***** <u>Allow gas evolution to stabilize</u>
- * <u>Attempt to fuse</u>
- * <u>Measure excess evolved gas</u>
- *****[Search for evidence of potential products of nuclear reaction]

Phase Change Calorimetry:

Liquid Nitrogen Boil-Off

Measurements:

$$Q_o = (\delta m / \delta t) [C_{vap.}]$$

Apparatus

Calorimeter accurate and precise.

Precision reduced by baseline drift (heat leaks). Excess Heat from 12/12 PdD_x on PdD_x (codeposit) Largest amount 3.9 J for thicker (250 μ m) wire. Excess Heat from 2/3 Ni/NiH_x

Largest amount 0.79 J or 87 \pm 8 % .

"Nickel/deuteride or mixed nickel ⁵ deuteride/hydride system may ... produce excess eneray"*.

Conclusions

- 1. "An unexpected source of heat can be observed in the D/Pd System when Deuterium is loaded electrochemically into the Palladium Lattice, to a sufficient degree."
- **2.** Low Z products of nuclear reactions can be measured:
 - <u>time and quantity correlated with excess heat production [4He]</u>
 - and (apparently) uncorrelated with the heat [³H and ³He].
- 3. It is possible to initiate nuclear reactions with chemical energies...
- 4. The reactions yield significant power and energy.
- 5. Meaningful Energy from Ni/Natural H₂?

Current Major Scientific Problems:

- Reproducibility and controllability
- Lack of quantitative understanding

Thank you!

Funding Support:

EPRI, MITI, DARPA, DTRA

The speaker is also very much indebted to a group of scientists and engineers which had as its core: *Esperanza Alvarez, Yoshiaki Arata, Jianer Bao, Les Case, Jason Chao, Bindi Chexal, Brian Clarke, Dennis Cravens, Steve Crouch-Baker, Jon McCarty, Irving Dardik, Arik El Boher, Ehud Greenspan, Peter Hagelstein, Alan Hauser, Graham Hubler, Nada Jevtic, Dennis Letts, Shaul Lesin, Robert Nowak, Tom Passell, Andrew Riley, Romeu Rocha-Filho, Joe Santucci, Maria Schreiber, Stuart Smedley, Francis Tanzella, Paolo Tripodi, Robert Weaver, Vittorio Violante, Kevin Wolf, Sharon Wing and Tanya Zilov.*

SRI International

Headquarters: Silicon Valley

SRI International 333 Ravenswood Avenue Menlo Park, CA 94025-3493 650.859.2000

Washington, D.C.

SRI International 1100 Wilson Blvd., Suite 2800 Arlington, VA 22209-3915 703.524.2053

Princeton, New Jersey

SRI International Sarnoff

201 Washington Road Princeton, NJ 08540-6449 609.734.2553

Additional U.S. and international locations

The ICCF Series of Conferences

AMERICA

- 1. Salt Lake City, Utah
- 4. Maui, Hawaii
- 7. Vancouver, B.C.
- 10. Cambridge, Mass.
- 14. Washington, D.C.
- 18. *Columbia, MO* 2012

Proposed

EUROPE

- 2. Como, Italy
- 5. Monaco
- 8. Lerici, Italy
- 11. Marseilles, France
- 13. Sochi, Russia
- 15. Rome, Italy

<u>ASIA</u>

- 3. Nagoya, Japan
- 6. Sapporo, Japan
- 9. Beijing, China
- 12. Yokohama, Japan
- 16. Chennai, India

17. Korea Aug

Upcoming

Other Conferences

13 in Russia, 7 in Japan, 6 in Italy and many sessions at various society conferences [APS, ACS, ECS, *etc*.]