Deuterons-to-4He Channels

Akito Takahashi*1

*1 Osaka University, Osaka, Japan; akito@sutv.zaq.ne.jp

Presented at ICCF13, June 2007, Russia Revised, July 2009

Major criteria of theoretically modeling the process of "radiation-less excess heat with ⁴He ash" as condensed matter nuclear effects (CMNE) are:

- A) How can the mutual Coulombic repulsion between deuterons be overcome, so as to reach at significant level of deuteron-related fusion rates?
- B) How can ⁴He generation channel be predominant?
- C) How can hard radiations be suppressed?
- D) What kinds of environments in/on condensed matter are incubating CMNE?

Outline

 Two-Body d + d fusion and Out-Going Channels

 Third Interaction to d + d strong force for Changing Out-Going Channels

D-Cluster Fusion to Produce ⁴He

Major Experiments (green; after 2001)

1) Excess Heat with He-4

Miles, Arata, McKubre, Gozzi, Isobe, de Ninno Celani, El Boher, and so on

2) Cold Transmutations

Iwamura, Mizuno, Miley, Ohmori, Celani, Karabut Szpak, and so on

3) Weak Neutron Emission

Jones, Takahashi, Mizuno and so on

4) Anomalous DD Enhancement

Kitamura, Kasagi, Takahashi, Huke and so on

[Essential Conclusions of Recent Studies]:

- 1 Clean Fusion Phenomena producing ⁴He ash and energy
- 2 Occurrence of Cold Transmutation and Fission
- **3 Consistent Theoretical Models for Condensed Matter Nuclear Effects**

Three Steps in Nuclear Reaction

Level scheme of He-4

$d + d \rightarrow {}^{4}He^{*}(23.8MeV) \rightarrow Break-up$

- Branching Ratio : $S_n(0)/S_p(0)/S_g(0) = \Gamma_n/\Gamma_p/\Gamma_g = 0.5/0.5/0.0000001$
- $\Gamma_n = \Gamma_p = 0.2 \text{ MeV}$
- $\Gamma_g = 0.04 \text{ eV}$
- $\Gamma_t = \Gamma_n + \Gamma_p + \Gamma_g$
- $T = h/\Gamma_t = 1E-22 s$
- No forces to change BRs have ever been proposed!

$d + d + E_k = {}^{4}He^*(E_X) = {}^{4}He^*(Q + E_k)$

$d + d \rightarrow {}^{4}He^{*}(23.8MeV) \rightarrow Break-up$

- Branching Ratio : $S_n(0)/S_p(0)/S_g(0) = \Gamma_n/\Gamma_p/\Gamma_g = 0.5/0.5/0.0000001$ for $E_k = 0$ to 200 keV
- $\Gamma_n = \Gamma_p = 0.2 \text{ MeV}$
- $\Gamma_g = 0.04 \text{ eV}$
- $\Gamma_t = \Gamma_n + \Gamma_p + \Gamma_g$
- $T = h/\Gamma_t = 1E-22 s$
- · τ _{gamma} = h/Γ _g = 1E-15 s

Summary of d+d fusion

- Life Time of Virtual Compound State ⁴He* is too short, ~10⁻²² s, to change final state interaction (Branching Ratios) by External Field.
- No lower excited state than n- and pemission channels is possible, due to nonexistence of negative kinetic energy.
- $[n]/[t]/[\gamma] = 0.5/0.5/10^{-7}$ for $E_d = 0.025eV$ to 0.1 MeV; almost constant branching ratios.

Third Interaction to d+d fusion

- To change Final State Interaction of d+d process for producing ⁴He, we need some Third Interaction Field during Initial State Interaction.
- As External Interaction Fields, we have in principle;
 - 1) Gravity,
 - 2) Weak Interaction,
 - 3) Electro-Magnetic Interaction
 - 4) Strong Interaction

Scaling of PEF (Pion Exchange Force) for Nuclear Fusion

```
Two Body Interaction: PEF = 1
   n + \pi \rightarrow p
(udd) (ud*) (uud)
                       : u; up quark
                        d; down quark
(uud) (
                       :u*; anti-up quark
                        ; anti-down
                                                  What External Force?
                          quark
For D + D Fusion;PE
                                          PEF
```

We need additional force in the initial state interaction, to change final state Branching Ratio and Products.

Comment by A.T.

Fusion Rate for Collision Process

- dynamic or transient process -

- $T = \langle \Psi_f | H_{int} | \Psi_i \rangle$
 - = <Initial State Interaction>
 x<Intermediate Compound State>
 x<Final State Interaction>
- Cross Section ~ $T^2 \rho(E')$
- ρ(E'): final state density
- Reaction-Rate(σν): (4π²/h)νT² ρ(E')
- <Initial> = <EI. EM Int><Strong Int>
- <Final>=BRs to Irreversible Decays

Relative Strength of Interactions

Comment by A.T.

- Nuclear Strong Interaction: f²/hc = 1
- Electro-magnetic Interact.: e²/hc =7.3E-3
- Weak Nuclear Interaction: (ghc)²(mc/h)⁴=

5E-14

Gravity: GM²/hc = 2E-39

• S_{dd} = 1.1E2 keVb vs. S_{pp} = 1E-22 keVb (Strong Interaction) (Weak Interaction)

 $\sigma \sim (T-matrix)^2$

Third Interaction by Photon/Phonon

- About 4 MeV from close <d-d> pair should be removed by multiple <d-d>/P/P coupled channels. <d-d>: out of strong force range!
- Photon energy quantum should be less than D displacement energy in lattice (about 40 eV): we need more than 10⁵ photon-coupled channels.
- <d-d> Life Time should be greater than $3(nm)x(3x10^{-18} s)x10^5 = 9X10^{-13} s \sim 1 ps$

Third Interaction by Photon/Phonon

- The many-body interaction process between the d+d pairing and the third field of photon-phonon coupling (more than 10⁵ channels) in the lattice of condensed matter may be considered.
- Due to the very short range force of d+d strong interaction and its very short life time of virtual intermediate compound state, no processes have ever been proved to remove the 4 MeV gap energy. (Avoid single photon transition from ⁴He* -P-wave!)
- Moreover, the field coupling constant of electromagnetic interaction looks too weak, on the order of 10⁻² of that for the strong interaction, to drastically change the state of d+d strong interaction for fusion. Quantitative studies on transition probabilities will be needed.

Deuteron-Cluster Fusion

 Third (plus 4th) Field by Strong Interaction requires D-Cluster Fusion under Ordering Process.

 4D Fusion by TSC (Tetrahedral Symmetric Condensate) is proposed by Takahashi.

Basic Mechanism (Takahashi Model)

 Tetrahedral Symmetric Condensate (TSC):

4d+4e can squeeze to Transient Bose Condensation (TBC),

under 3-Demensional Symmetric Constraint at some site in CM, to form a very small Charge-Neutral Pseudo-Particle

TSC Condensation Motion calculated by TSC-Langevin Code

 $E_d = 13.68 \text{ keV}$ at $R_{dd} = 24.97 \text{ fm}$, with V trap = -130.4 keV

Fusion Rates of Steady State dde* Molecules:

$$\left| \lambda_{nd} = \frac{2}{\hbar} \langle W \rangle P_{nd}(r_0) = 3.04 \times 10^{21} P_{nd}(r_0) \langle W \rangle \right|$$

Regarding bo as Rgs, we get Pnd(ro) values.

Molecule	R _{dd} =R _{gs} (pm)	$P_{nd}(r_0)$; Barrier-	<w> (MeV)</w>	λ 2d (f/s)	λ 4d (f/s)
		Factor			
D_2	74.1	1.0E-85	0.008	2.4E-66	
dde*(2,2)	21.8	1.3E-46	0.008	3.2E-27	
μdd	0.805	1.0E-9	0.008	2.4E+10	
4D/TSC-min	0.021	1.9E-3	62		3.7E+20

4D/TSC-min exists within $\Delta t = 2x10^{-20}$ s at final stage of condensation:

Decay of TSC: $exp(-\lambda 4d\Delta t) = exp(-7.6) = 0.0006 \rightarrow 4D$ fusion by 100% per TSC Gen.

4D Fusion and ⁴He Production Rate by TSC

- t_c: Condensation Time of TSC (1.4007 fs)
- n_{4d}: 4D Fusion Yield per TSC

$$\left| \eta_{4d} = 1 - \exp\left(-\int_0^{t_c} \lambda_{4d}(t) dt\right) \right|$$

$$\lambda_{4d}(t) = 3.04 \times 10^{21} \langle W \rangle P_{4d}(r_0; R_{dd}(t)) = 1.88 \times 10^{23} P_{4d}(r_0; R_{dd}(t))$$

$$\int_0^{t_c} \lambda_{4d}(t)dt = 1.88 \times 10^{23} \int_0^{t_c} P_{4d}(r_0; R_{dd}(t))dt \qquad \int_0^{t_c} P_{4d}(r_0; R_{dd}(t))dt = 2.31 \times 10^{-22}$$

$$\int_0^{t_c} P_{4d}(r_0: R_{dd}(t)dt = 2.31 \times 10^{-22})$$

$$Y_{4d} = Q_{tsc} \eta_{4d}$$

 $|Y_{4d} = Q_{tsc}\eta_{4d}|$ Macroscopic 4D Fusion Production Rate

$$\eta_{4d} \cong 1.0$$

$$Y_{4d} \approx Q_{tsc}$$

 $Y_{4d} \approx Q_{tsc}$ Qtsc: TSC Generation Rate

Energy Level Scheme of Be-8

4D → ⁴He + ⁴He + 47.6MeV (Final State Interaction)

Decay-Channel of ⁸Be

```
4D \rightarrow {}^{8}\text{Be} + 47.6 \text{ MeV}
^{8}Be \longrightarrow ^{4}He + ^{4}He + 91.86 keV: Major
             →3He + 5He(n+4He) – 11.13 MeV

→ t + <sup>5</sup>Li(p+<sup>4</sup>He) - 21.68MeV

            → d + <sup>6</sup>Li - 22.28 MeV
            → p + <sup>7</sup>Li - 17.26 MeV
            \rightarrow n + ^{7}Be - 18.90 MeV
```

⁸Be Excited State may open to threshold reactions

Branching Ratio (Final State Interaction)

Channels for CP Generation by 4D I. Symmetric Fragmentation 1) 4D → 8Be*(47.6MeV;0+,0)→

- 4 He*(Ex) + 4 He*(Ex) + 47.6MeV-2Ex
- 1-1) Ex=0; 4 He*(gs;0+,0): 4D $\rightarrow \alpha + \alpha + 47.6$ MeV; **E** α **=23.8MeV**
- 1-2) Ex=20.21MeV (1st excited state of ⁴He);
 ⁴He*(20.21MeV;0+,0)→p(0.6-2.2MeV)+t(1.8-3.4MeV)
 + (Ex-19.815=0.4MeV) + (3.6MeV; moving ⁴He*)
 - ; this triton makes secondary d+t reaction to emit 10-17MeV neutrons

1)
$$4D \rightarrow {}^{8}Be^{*}(47.6MeV;0^{+},0) \rightarrow$$
 ${}^{4}He^{*}(Ex) + {}^{4}He^{*}(Ex) + 47.6MeV-2Ex$
- continued -

Ex=21.01MeV(0⁻,0), 21.84MeV(2⁻,0),
 22.33MeV(2⁻,1), 23.04MeV(1⁻,1)
 are forbidden by odd parity

Therefore, no neutron emission channels are allowed!

II. Asymmetric Fragmentation 1-3)

•
$$4D\rightarrow^{4}He^{*}(20.21MeV;0+,0) + {}^{4}He(g.s.;0+,0) + 27.39MeV$$
 (**E**\alpha=**13.69MeV**)

⁴He*(20.21MeV):KE=13.69MeV:
 → t(10.2-10.6MeV) + p(3.5-3.9MeV)

This channel would be the second source of tritium generation.

2) $4D \rightarrow 8Be^* \rightarrow 6Li(Ex)+d+(25.3MeV-Ex)$

Even parity states: Ex= 2.186MeV(3+,0),
3.563MeV(0+,1), 4.31MeV(2+,0),
5.31MeV(2+,1), 5.65MeV(1+,0),
15.8MeV(3+,0)

• 2-1) $4D \rightarrow ^{6}Li(2.186) + d + 23.11MeV$

KE=5.77 KE=17.3

⁶Li(2.186MeV):KE=5.77MeV:

 \rightarrow ⁴He(3.6-4.1MeV) + d(1.6-2.4MeV)

2-1) to 2-6)

Ex (MeV)	K.E. of ⁴ He	K.E. of d
	(MeV)	(MeV)
2.186	3.6-4.1	1.6-2.4
3.563	2.9-4.3	0.2-2.6
4.31	2.6-4.5	1.9-3.6
5.31	2.1-4.6	0.9-4.2
5.65	1.9-4.7	1.1-4.4
15.8	4.0-5.6	8.0-11.1

2)
$$4D \rightarrow ^{8}Be^{*}(47.6MeV;0+,0)$$

 $\rightarrow ^{6}Li^{*}(Ex)+d+(25.3MeV-Ex)$

2-7)
 ⁶Li*(25.3MeV)→α(7.9MeV)+d(15.9MeV)

```
    2-8)
    <sup>6</sup>Li*(25.3MeV)→<sup>4</sup>He*(20.21MeV;0+,0)+d
    +3.6MeV; this may be path to
    Ex=20.21MeV
```

 $^{4}\text{He*}(20.21\text{MeV};0^{+},0) \rightarrow \text{p+t+0.4MeV}$

Triton from moving ⁴He* makes secondary d+t reaction to **emit 10-17MeV neutrons**

3)
$$4D\rightarrow^{8}Be^{*}(47.6MeV;0+,0)$$

 $\rightarrow^{4}He^{*}(Ex) + (d+d) + (23.8MeV-Ex)$

• 3-1) Ex=0; Eα=11.9MeV, Ed=5.95MeV

3-2) Ex=20.21MeV(0+,0);
 ⁴He*(20.21MeV;0+,0): moving with 1.8MeV:→t(1.2MeV)+p(0.7MeV)
 Ed=0.9MeV

After A. Takahashi, Trans. Fusion Technology 1994

.1: Typical decay channels of 4D fusion; E₁ transition may be induced with electromagnetic energy transfer via QED photons to lattice plasma oscillation. Major nuclear products are ⁴He with specified kinetic energies.

Fig.2: Illustration of extreme scenario of decay channel for 4D fusion; final nuclear products are 46 keV α-particles and most energy (47.7MeV) is transferred to lattice vibration via QED photons.

CP Spectra by 4D/TSC; Predicted

- ⁴He: 0.046, 1.52, 3.6-4.1, 2.9-4.3, 2.6-4.5, 2.1-4.6, 1.9-4.7, 4.0-5.6, 5.75, 7.9, 9.95, 11.9, 12.8, 13.69, 23.8 (MeV)
- Triton: 1.8-3.4, 10.2-10.6 (MeV)
- Deuteron: 0.9, 1.6-2.4, 0.2-2.6, 1.9-3.6,
 0.9-4.2, 1.1-4.4, 5.95, 8.0-11.1,15.9 (MeV)
- Proton: 0.6-2.2, 3.5-3.9 (MeV)

Purple values are by odd spin-parity of

 8 Be*(Ex=47.6MeV)

Others are S-wave Transitions

M + 4p reaction:

Clean Fission, heat

D or d: deuteron, H or p: proton

 The lowest excited energy of ⁴He*, intermediate compound nucleus, by twobody d+d fusion reaction is 23.8 MeV. Lower excited energy than 23.8 MeV is forbidden by kinematics. As a result, [n]/[t]/[4He] branching ratio becomes almost constant values as 0.5/0.5/10⁻⁷ for $E_k = 0eV$ to 100keV (relative kinetic energy of reaction)

 If there happens the ⁴He* (Ex) state with Ex < 19.8 MeV, the final product becomes ⁴He with ground state, after electromagnetic transition. To realize this process by d+d reaction, there should exist the third coupling field which must take more than the 4 MeV difference energy (23.8 – 19.8) of the d-d system in the initial state interaction.

 The many-body interaction process between the d+d pairing and the third field of photon-phonon coupling in the lattice of condensed matter may be considered. Due to the very short range force of d+d strong interaction and its very short life time of virtual intermediate compound state, no processes have ever been proved to remove the 4 MeV gap energy. Moreover, the field coupling constant of electro-magnetic interaction looks too weak, on the order of 10⁻² of that for the strong interaction, to drastically change the state of d+d strong interaction for fusion. Quantitative studies on transition probabilities will be needed.

 Deuteron-cluster fusion, i.e. 4D fusion, may produce ⁴He final product as major ash of reaction, and triton, p, d as minor products. To realize the conditions of 4D fusion, the microscopic ordering/constraint process for the dynamic Platonic symmetry should be satisfied. The EQPET/TSC model is one of theoretical models, although we need further investigations to establish.