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Abstract
Several models are examined in which it is claimed that cold fusion is the result either of
tight binding of the electrons in H isotope atoms or molecules, or of an electron-H isotope
resonance which allows a higher probability of Coulomb barrier penetration. In the case
of models in which the electron is tightly bound to the H isotope atom, we show that
states below the most deeply bound (–16.39 eV) are impossible in principle. We also
present evidence against the possibility of the existence of electron-H isotope resonances.
Finally, a lower bound is found for the binding energy of H isotope molecules which is
above that calculated in the tightly bound electron-H isotope models.

1. Tightly Bound Hydrogen and Deuterium
A number of models assume the existence of an exotic chemical system whose

occurrence either precedes nuclear synthesis or makes it quite unnecessary. The similarity
of these postulated models is in their tight binding of electrons in atoms and/or
molecules. In one of the simplest, the authors1 claim that in addition to the normal energy
levels for the H atom, a more tightly bound sub-ground state of –27.17 eV is possible.
For them, the excess Cold Fusion (CF) power, with no nuclear products, is simply the
extra 13.68 eV/atom obtained as H isotopes go into the sub-ground state. If their tight H
abounds in the universe, one may ask why this spectral line has not been seen long ago.

Mayer and Reitz2 claim that resonances of ep, ed, and et are created which, if they
survive long enough, allow a high probability of Coulomb barrier penetration and
subsequent nuclear reaction. Their resonance model is based on that of Spence and Vary3,
who used single photon exchange in the Coulomb gauge. Recently, McNeil4 reformulated
the ep problem in a qualitative yet gauge-invariant way and finds no evidence for a



resonance in the ep system in the energy range of interest. Therefore, it is possible that
the results of Spence and Vary3 and hence Mayer and Reitz2 are spurious.

2. Deep Dirac States
Recently, Maly and Va'vra5 carried out a calculation for the hydrogen atom based upon

irregular solutions of the relativistic Dirac equation and obtained an extremely tightly
bound electron orbit. They get a binding energy of ~ 500 keV, and a radius of ~ 5 ×
10-13 cm, a nuclear dimension. For them, CF is primarily chemical. The excess energy is
500 keV/atom as these tightly bound atoms are formed. They suggest that this chemical
ash of tightly bound H or D atoms may account for the missing mass (dark matter) of the
universe. Their electron orbit radius of ~ 5 fm is 50 times smaller than muonic orbits of
250 fm. If such tight D atoms existed, they should produce fusion upon collision at a
much higher rate than in muon-catalyzed fusion. Moreover, there are some serious errors
in their analysis. At the nuclear surface, r = rn ≠ 0, both regular and irregular solutions are
allowed simultaneously for r ≥ rn. Therefore, a general solution is a linear combination of
them for r ≥ rn. When the boundary conditions are imposed at r = rn, it can be shown that
the irregular component becomes nearly negligible compared to the regular component6.
The results of Maly and Va'vra5 are incorrect, since they assumed erroneously that the
irregular solution is a general solution independent of the regular solution, as shown
below in detail.

The radial part of the relativistic Schrödinger equation is7

for a point Coulomb potential   rZere /2 , where

and E and m are the total energy and mass of the electron, respectively. Because of the
centrifugal barrier, we need consider solutions of this equation for 0 only because the
energies corresponding to 0 must be higher than the lowest 0 energy. As 0 ,

the wavefunction has the behavior

where

Because the wavefunction has the boundary condition , from eq. (2),

and , where n' is a positive integer. Furthermore, because

,



and the energy levels E+ and E- are

Note that eq. (8) gives a binding energy of E- – mc2 ≈ mc2(γ-1) ≈ –510 keV, so that, if
the solutions corresponding to s- were acceptable, deeply bound electron states might
exist. However, these solutions are incorrect. Furthermore, eq. (7) gives the correct
observed binding energy of E+ – mc2 = –13.6 eV for n' = 0 and Z = 1.

The energy levels, eqs. (7) and (8), obtained from the relativistic Schrödinger equation,
eq. (1), are similar to those of Maly and Va'vra5 (their eq. (24)) for the Dirac equation7.
The same shortcoming, detailed below, applies to their solution; however, it is less
transparent than our example because the Dirac equation involves a set of coupled
differential equations7.

We can assume that the potential e (r) is given realistically by

The wavefunction χ (r) = rψ(r) then, as rn → 0, has the following form:

where ( c)2K2 = (E + 2
nZe / r )2 – m2c4. Note that, in eq. (10), we have used the regular

solution χ = A sin Kr for the interior wavefunction. which is zero at the origin, as it must
be for a finite potential, and the form of the exterior wavefunction comes from the
analytic solution of eq. (1).

When we equate logarithmic derivatives

we obtain,

so that, for a physical wavefunction, as rn →0, the solution corresponding to s- does not
contribute. However, because of the finite size of the nucleus, the wavefunction consists
of a large component corresponding to s+ and a small component corresponding to s- with



a binding energy which is thus very close to the original binding energy E+ – mc2. For
instance, for the case of a proton, the proton radius rn ≈ 1 fm, Z = 1, and E ≈ E+ = mc2 –
13.6 eV; therefore α ≈ 3.78 × 10-5 fm-1, and hence C/B ≈ –0.2 × 10-8.

3. Tightly Bound 
2H and 

2D Molecules

The next set of models involve tight H isotope molecules of radius ~ 0.25 Å in which
excess energy may result chemically, and/or from nuclear fusion as the tightly bound
atoms more easily penetrate their common Coulomb barrier8. Actually, there seems to be

no sound basis for assuming the existence of a superbound state of a 
2D ion. Some of the

analysis is qualitative. The most critical region is barely at the boundary of applicability
of the equations. An exact solution for the entire region under consideration will likely
yield a potential with no local minimum. Thus the metastable state may not be present in
a more rigorous analysis9. Hence, the superbound solution is at best unstable.

Gryzinsky10 and Barut11 present analyses to substantiate the existence of the metastable

2D state based on three-body calculations for two d's and one electron. Gryzinsky treats

the problem mainly classically, but invokes quantum mechanics to neglect radiation
effects for his oscillating electron. Barut's analysis is based on the Bohr-Summerfeld
quantization principle, and obtains a binding energy of 50 keV. Both authors,

independently, conclude that a "superbound" ( 
2D )* molecular ion can exist in which an

electron that is exactly half-way between the d's provides an attractive force and screens
the d Coulomb repulsion. Vigier12 presents an analysis almost identical to that of Barut11.
For Barut, Gryzinsky, and Vigier, the analysis is predicated on very unlikely precise
symmetry. The electron must be exactly the same distance on a line between the two d's.
The tightness of the orbit violates the uncertainty principle for a Coulomb potential, but
may not violate it with stronger potentials. Although a non-relativistic analysis may be
warranted for the large mass H isotopes around the electron, a non-stationary electron
will require a relativistic treatment because it will attain a velocity close to the velocity of
light due to its small mass. Perhaps a full relativistic calculation including spin-spin and
spin-orbit coupling may save this model, but this has not been presented as yet.

4. Rigorous Bound for the Binding Energies of 
2H and 

2D

Recently, Kim and Zubarev13 have shown a rigorous bound of –16.39 eV for the

binding energies of 
2H and 

2D , which poses a more serious difficulty for the tightly

bound 
2D models10,11,12.

The non-relativistic Hamiltonian for 
2D (or 

2H ) is



where me and Mi (i =1 or 2) are the masses, and er


and iR


, are laboratory coordinates of

the electron and deuteron, respectively. In terms of the center of mass coordinate

   c e e 1 1 2 2 e 1 2R m r M R M R / m M M    
  

, the internuclear coordinate 1 2R R R 
  

,

and the relative electron coordinate  e 1 2r r R R / 2,  
  

the Hamiltonian reads

where Mt = me + M1 + M2, M = (M1 M2)/( M1 + M2), μ = me(M1 + M2)/( me + M1 + M2),
and γ = (M1 - M2)/(M1 + M2). After separating the motion of the center of mass, one has
the following Schrödinger equation

where

The operator

where R RP
i

 
 

and r rp
i

 
 

, is positive. Note that γ =0 for M1 = M2. Therefore

or

But H
~

is separable in confocal elliptic coordinates14, and hence the exact numerical
solution of the Schrödinger equation,

is well known to be14

Since , we have



for any

The spin-orbit and spin-spin interactions are not expected to change the above bound of

–16.39 eV, eq. (23), dramatically.

5. Summary
We have examined several models which purportedly explain the results of Cold

Fusion, and found each to be lacking in some respect. Models in which the electron is
tightly bound to the hydrogen or deuterium nucleus were found to have serious
qualitative or quantitative defects, and models in which it is claimed that an unusual
electron resonance occurs are likely to be spurious. Finally, a lower bound for the binding

energies of 
2H and 

2D was found which is considerably higher than the claimed binding

energies in "superbound" models of the two H isotope molecules.
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