Passell, T.O. Pd-110/Pd108 Ratios and Trace Element Changes in Particulate Palladium Exposed to Deuterium Gas, PowerPoint slides. in Tenth International Conference on Cold Fusion. 2003. Cambridge, MA: LENR-CANR.org.

Slide 1

Pd 110/108 and Trace Element Changes in Pd Powder Exposed to Deuterium Gas

Thomas O. Passell

Neutron Activation Analysis (NAA)

- Method uses Integral Photopeak Ratios of Gamma Rays of Neutron Capture Isotopes
- Pd110/Pd108 Possible using 342 keV gamma of 7.45 day Ag-111 and 88 keV gamma of 13.47 hour Pd-109
- Ag-109, Co-59, Zn-64, Ir-191, and Au-197 all Accessible to this method

Time of Flight Secondary Ion Mass Spectrometry (TOF-SIMS)

- Characterizes tiny spots on Surfaces and Layers just under the surface
- Subject to uncertainties from Multiple Atom Ions Except in the Case of Lithium
- Li-7/Li-6 Ratios Immune from Multiple Atom Ion Effects
- Results of the Analysis of Li-7/6 Ratios Included to complement NAA

Slide 4

 Sample 	Pd110/Pd108	Ag109/Pd110
 Name 	Atomic Ratio	Atomic Ratio
•	(One Sigma)	(X 10^6)
•		
• Pd-D	Exactly 1	53
• (Virgin)	By Definition	
•	•	
• Pd-A	1.037(.008)	663
• (Active)		A/D=12.5
•		
• Pd-B	1.089(.008)	152
• (Active)	. ,	B/D=2.87
•		
• Pd-C	1.014(.009)	488
• (Active)		C/D=9.21

Slide 5

 Sample 	Co59/Pd110	Zn64/Pd110
 Name 	Atomic Ratio	Atomic Ratio
•	(X 10 ⁶)	(X10 ⁶)
•		
• Pd-D	227.5	83
• (Virgin)		
•	000	5 40
• Pd-A	286	516
• (Active)	A/D=1.26	A/D=6.22
•	077.5	4050
• Pd-B	377.5	1259
• (Active)	B/D=!.66	B/D=15.2
•		
• Pd-C	730	608
• (Active)	C/D=3.21	C/D=7.33

Sample	Au197/Pd110	Li7/Li6	
• Name	Atomic Ratio	Atomic Ratio	
•	(X10^6)	(One Sigma)	
•			
• Pd-D	19.4	13.6(1.0)	
• (Virgin)		Natural Li=12.5	
•			
• Pd-A	89.4	14.5(0.3)	
• (Active)	A/D=4.61	A/D=1.07(.08)	
•			
• Pd-B	20.6	22(1.4)	
• (Active)	B/D=1.06	B/D=1.62(.16)	
•			
• Pd-C	24.1	16.2(0.1)	
• (Active)	C/D=1.24	C/D=1.19(.09)	

SampleName	Ir191/Pd110 Atomic Ratio (X10^6)	
Pd-D(Virgin)	2.26	
Pd-A(Active)	17.8 A/D=7.88	
Pd-B(Active)	0.84 B/D=0.37	
Pd-C(Active)	1.5 C/D=0.66	

Series1
Series2

□ Series1
□ Series2
□ Series3
□ Series4
■ Series5

Slide 14

Slide 16

Conclusions

- Impurity Variations May be Random Fluctuations or Due to Changes from Closure of Hollow Cylindrical Chamber Containing the Powdered Palladium by Electron Beam Welding
- If Due to Some Nuclear Process, The Isotopic Ratios Should Differ From Terrestrial Values – For Elements with 2 or more Isotopes
- Lithium 7/6 Ratios Show Differences On Surface
- Silver 109/107 Being Measured For Pd-A and Pd-D by Accelerator Mass Spectroscopy (Immune From Multiple Atom Ion Confusion)

Conclusions (continued)

- Only Nuclear Sources for Producing Li-7 with Positive Q with Deuterons are
- Li-6(d,p)Li-7, (Q=+5.03 Mev)
- Be-9(d,Alpha)Li-7 (Q=+7.06 Mev)
- Silver, Cobalt and Zinc Could Come From Deuterons on Palladium –(d,n) or (d,fission)
- Gold Could Come From Deuterons on Impurity Platinum (Pt-196(d,n)Au-197 Q=3.44 Mev)
- Two Cases of Iridium Depletion could be Fission