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Abstract 
We have constructed an experimental system to replicate the phenomenon of heat 
and 4He generation by D2 gas absorption in nano-sized Pd powders reported by 
Arata, 1 and to investigate the underlying physics. We performed calorimetry 
during D2 or H2 absorption with micronized powders of Si, Pd and Pd-black. With 
Pd-black and D2, after the palladium deuteride formed, the cell produced 8.3 ±4.5 
kJ (or 2.6 ±1.4 kJ/g), which is somewhat larger than the systematic error of 4.0 kJ 
estimated from a D2 blank.  

1. Introduction 
Arata recently reported 1 that high purity D2 gas charging of Pd nano-powders in the form of 

Pd/ZrO2 nano-composite induced significantly higher temperatures inside the reactor vessel than 
on the outside wall, while blank runs using H2 gas showed almost no temperature difference. The 
temperature difference lasted for more than 50 hours. To verify that the excess heat came from a 
nuclear reaction, QMAS was employed to show the existence of 4He as nuclear ash in the vessel. 
The phenomenon seemed to be highly reproducible as long as the same test equipment was used.  

In the present work we constructed an experimental system to replicate the phenomenon of 
heat and 4He generation and to investigate the underlying physics. We report preliminary results. 

2. D2/H2 absorption system 
The system is composed of two identical chambers (a twin system): one for a D2 gas 

foreground run, and the other for H2 gas blank run. Each system has an inner reaction chamber 
containing Pd powder and an outer chamber that is evacuated to provide thermal insulation. 
Inside the reaction chamber is located a sample cup, around which a heater is wound for baking. 
In addition to thermocouples located on the sample cup and the outer surface of the reaction 
chamber for temperature measurement, a pair of thermocouples is provided for flow calorimetry 
to estimate the heat production rate by measuring the temperature difference between the inlet 
and the outlet of a cooling water pipe. The D2 gas is nominally 99.5% pure and the H2 is 
99.998% pure. Flow rate control of D2/H2 gas purified with a liquid-nitrogen cold trap is made 
with a Pd membrane filter which also serves as an additional purifier. 
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When D2 gas was used with Pd-black, apparent excess heat production was observed. 
However, temperature oscillations and drift were relatively large, so the accuracy of the system 
must be improved to confirm the result. For example, the time constant of the calorimeter has to 
be decreased by decreasing the heat capacity of the reaction chamber. Increasing the mass of the 
test sample should also help obtain clearer heat evolution. Nano-sized powders of Pd as well as a 
variety of alloy powders also deserve examination. 
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