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Introduction to Cavitation Experiments

The Preface described four methods for loading isotopes of hydrogen into materials. They are
electrochemical loading from a liquid, gas loading, plasma loading and beam loading. Over the
years, there has been a steady stream of results reporting cavitation loading of solids in LENR
experiments. So, how does cavitation loading work? Does it fit into one of the four classes of
loading?

Cavitation is the process where pressure within water or another liquid is quickly reduced, so
that the liquid rapidly vaporizes and forms bubbles even at ordinary temperatures. The bubbles
then collapse, which results in a self-collision in the center of the bubble. That generates both
high temperatures and high pressures. If the bubble is in the liquid and away from any solids,
the collapse is symmetric in all three dimensions. The radius of a cavitation bubble varies from
about 4 micrometers to 40 nanometers during its lifetime of about 100 nanoseconds. It
collapses at a speed of about Mach 4 and produces a million-fold increase in density over the
initial vapor density. Light generated at the center of a collapsed cavitation bubble is called
sonoluminescence. The collapse of cavitation bubbles also induces chemical reactions.

For LENR cavitation experiments, a thin solid foil is placed into heavy water. An ultrasound
transducer produces intense sound in the water, leading to formation of transient bubbles. If the
bubbles are on the surface of the metal foil, the collapse is cylindrically symmetrical around an
axis normal to the foil surface. As a cavitation bubble on a solid surface collapses, a jet of
material impacts the surface. This phenomenon is responsible for cavitation erosion of the
surfaces of materials, such as the propellers of ships, and also for acoustic emissions. However,
in LENR experiments, the collapse of cavitation bubbles on the surface of a solid effectively
injects nuclei of the vapor into the foil. These include protons in the case of light water and
deuterons in the case of heavy water. The chemical state of the vapor, that is, molecules, atoms
or ions, is an important consideration for understanding the advantages of cavitation loading
and its energetic efficiency.

Returning to the questions about the types of loading due to cavitation bubble collapse, we
have a mixed situation. The collapsing bubble contains gas (the vapor) for most of its motion,
and then a plasma of increasing temperature, when it is near fully collapsed. And, the jet of
material is like a beam impacting the surface of the foil. So, cavitation loading spans at least
two of the major classes of loading, plasma and beam, both of which involve higher energies
per particle than electrochemical or ordinary gas loading. But, however complex is cavitation
loading, it is effective.

The use of cavitation to load materials with H or D in LENR experiments is sometimes called
sonofusion. That is a correct term only if fusion is the sole resulting nuclear reaction. This
terminology also has one other disadvantage. In the past several years, another line of
experiments involving insonification, cavitation and fusion has arisen, and received a lot of
attention. It is best called “bubble fusion”. Such fusion is not LENR because no solid lattice is
involved. In the case of bubble fusion, sound is used to produce cavitation in a liquid with a
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nearby source of neutrons. The hot plasma produced by the cavitation bubble collapse in heavy
water is postulated to cause hot fusion. The experimental measurement of such plasmas is
challenging because of their small size and very transient lifetimes. And, there is a wide range
of opinions on the reality as well as the characteristics of bubble fusion. However, the field of
bubble fusion is of no concern to LENR.

There were two papers on cavitation induced effects presented at ICCF-14. The first was by
Stringham, who has worked on sonofusion for many years and presented some remarkable
results at earlier conferences in this series. This time, his paper was a useful review of the
basics of sonofusion, and a summary of some results. Some of his excess heat data is at
Stringham’s web site: http://sonofusionjets.com. There he shows excess power data to almost
40 W.

The second paper on bubble cavitation was qualitatively different from most experimental
papers at the conference. There was no lattice involved in these experiments. In this paper,
Kornilova and her associates reported the production of x-rays, as well as light, from cavitation
bubbles produced when light oil was forced through an orifice at pressures up to 80 to 90
atmospheres. First, very soft x-rays (1-2 keV) were measured, a remarkable result given the
very short ranges of such radiation in condensed matter. Then, fine copper powder was placed
on the exterior of the experiment, and x-rays peaking at 3 keV and extending to 5 keV were
recorded. These unusual results challenge explanations.

In general, the work on cavitation fusion has produced enticing results, but has not been
adequately replicated in other laboratories. Such work is on the very long list of LENR and
related experiments that should be done.
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Bubble Driven Fusion
Roger Stringham

First Gate Energies

Abstract
Experimentally, heat and 4He are sonofusion (SF) fusion products. SF boosts a
naturally occurring phenomenon with cavitation-induced bubbles and their
collapse to high energy densities. One unique fusion path to heat and 4He is
shown. What has been increasingly evident is that high-density experiments of
ICF and astrophysical relations of fermions and bosons show a plausible path to
SF products. SF focuses around implantation of nanometer jet volumes and
picosecond time scales. Several high-density systems like those of WDS, MF, z-
pinch systems, and ICF have influence over this model path.

Acronym list
BCS Bardeen, Cooper, Schrieffer; superconductivity theory
BDS Black dwarf star; an old and cool WDS
BEC Bose Einstein Condensate; follows Bose Einstein statistics
DOE Department of Energy
EM Electromagnetic
HDZP High density z-pinch using a deuterium frozen fiber and high current
ICF Inertial confined fusion; an approach to fusion via hot fusion
MF Muon fusion; a muon replaces an electron in D2 and has a pseudo density of a WDS
MS Mass spectrum; helium measurement by DOE’s Brian Olive
Qa Acoustic power input to piezo reactor in watts
Qi Total power input in watts
Qo The calorimetric measured heat out of reactor in watts
Qx Heat measured above that expected heat in watts
Rf The final transient cavitation bubble radius
Rmax Maximum transient cavitation bubble radius
SEM Scanning Electron Microscope
SF Sonofusion; fusion source from collapsing cavitation bubbles
SL Sonoluminescence; acoustic light emission from bubble collapse
TCB Transient cavitation bubble; a bubble with at least 3 watts of power/cm2

WDS White dwarf star; a collapsed star no longer generating heat

Introduction
The experimental part of this paper draws from many years of compelling results pointing to

fusion events in target foils produced by TCBs in D2O. TCBs produce high-density plasma jets,
which coincide with SL during the TCBs collapse process [1], where EM fields compress the
jet’s contents. SL is used to monitor SF experiments. Jets implant the target foil forming
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deuteron clusters. The transient deuteron clusters, with temperature and density consideration,
are deuteron coherent BECs where the De Broglie wave exceeds the DD cluster spacing. The
femtosecond endothermic recombination of the implanted free electrons with the surface
deuterons of the cluster cools and compresses its contents. The implosion of the recombination
shockwave creates enough contact time for DD fusion event(s) to occur. The expected gamma
radiation is not found, as this expected product is replaced by heat. (The mechanism for the
gamma is slower than the direct conversion fusion energy to heat. The single wave function
involves all of the BEC cluster deuteron bosons.) The conversion of fusion energy to a lattice
heat pulse is shown in the many SEM photos of target foil surface ejecta sites. In piezo systems
that resonated at 20 and 40 KHz, ejecta were expelled into the circulating D2O, where the
fusion 4He and heat were circulated and measured. The measurements of 4He products, at 550
ppm were measured in a Department of Energy laboratory [2]. 1.6 MHz produce much smaller
but more numerous jets with similar energy densities. Heat measurements showed Qx that
increased with Qa. Qi was varied from 4 to 50 watts where Qx was 0 to 40 watts [3,4].

The fermion isotopes of hydrogen have a possibility to pair in crossover high-density
environments forming a fermion boson, a behavior similar to Cooper pairing. Clusters and their
recombination shockwave that will promote the fusion of pairs of hydrogen isotopes may
behave in a mode parallel to DD fusion and heat.

The Transient Cavitation Bubble, TCB
A quick view of cavitation follows [1]. A sinusoidal wavelength defines the time for a

generation of bubbles that cycle through a birth, growth, collapse, and jet formation modes as
the D2O prepares for its next bubble generation [5]. An oscillator drives a 1.6 MHz resonance
system that produces millions of bubbles with an initial radius of around 0.4 microns. As the
bubble expands in the low-pressure isothermal growth phase, it picks up D2O mass from the
bubble’s interface. Crossing over into the positive pressure zone of the acoustic wave, the
partially evacuated bubble reaches its Rmax of about 4 microns; then begins its rapid collapse.
The bubble surface accelerates towards its center at Mach 4 velocity or greater [6]. In 0.1
microsecond the bubble’s somewhat leaky adiabatic Rf of about 0.04 microns is reached. The 1
million-fold energy density increase is enough to dissociate some of the D2O. Here two events
occur: a burst of photons is emitted as SL and the plasma contents of the bubble are transferred
to a jet where EM compression pressures squeeze the jet’s contents [7]. See Figure 1-1. The jet
— a high-density deuteron plasma — is confined by EM pressures [8]. The first step in
producing heat and 4He in SF is the TCB and jet system. Photos of cavitation jets will be found
in reference [9].

Other Fusion Systems
Other fusion systems exist. The first is Muon Fusion (MF), where a heavy muon replaces an

electron in the D2 molecule, shrinking its orbit to 1/207 of its normal orbit size. [10] In MF the
two deuterium atoms of D2 fuse at 100 K. The density or separation of the two deuterons is
about the same as in a BDS environment. The gravitational forces present in a BDS would
compress these boson deuterons to fusion densities in less than a picosecond. The BDS’s high-
density environment lacks internal radiation pressure, has no fuel for fusion, and is equivalent
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to the density of muon fusion systems. The second is the high density z-pinch (HDZP), a
vacuum system that feeds a shaped high current pulse into a 50 micron frozen D2 fiber. The
magnetic pressures around the fiber are very similar to the EM pressures of the SF jet. The
magnetic pressure squeezes the fiber’s deuterons to the fusion point [11]. The third is the
backlighting experiments performed by MIT and the University of Rochester where transient
EM fields were measured in ICF systems using the plastic CR39 to establish deflection patterns
of synchronized mono energetic protons. These fields were measured at 60 Tesla and 109 V/m.
at densities of 300 gm/cc [12]. The fourth is the astrophysics of the BEC and the BCS systems.
Information gathered from these systems gives substance to the formulation of a SF path to the
fusion products heat and 4He. From experiments, it is shown that DD fusion occurs via the
cavitation bubble. So the objective is fitting the SF experimental work to extrapolated hot
fusion systems into a coherent path.

Experimental Set-up
The objective is experimentally boosting the naturally occurring cavitation phenomenon to a

controlled bubble system. Important parameters are controlled, creating the transient high-
density, environment. A complex system is used to gather the data, but is not necessary for the
devices operation. The cavitation device is energized by an ultrasound piezo, producing micron
size bubbles in circulating D2O. A pump circulates the D2O through the SF device to a heat
exchanger, a flow-meter, a bubbler and back to the pump [7].

The piezo device responds to its feedback oscillator that tracks the small changes of its
resonance frequency due to the influence of small changes in temperature and pressure. This
keeps the device well tuned to its resonant frequency. The adiabatic bubble collapse
compresses and dissociates D2O into its ions. For the 1.6 MHz system the measurement of SL
photons were emitted and counted via a photomultiplier and counter system as they pass
through the reactor window. SL is used as a tool for evaluating and maintaining control of the
SF parameters; temperature, pressure, and acoustic input. The measurements were made in a
light proof box where the air circulation keeps the box and the SF device at constant
temperature. The photon background count was 200 photons/sec. The box contains the main
components of the SF apparatus. The maximum photon count was near 2,000,000/sec. [3].

SF is a collection of billions of one cycle acoustic events that include the bubble’s collapse,
the transfer of the bubble’s contents into a jet, the target foil Boson cluster and the fusion heat
pulse. The jet is very small and contains high velocity sheath electrons. The 1.6 MHz jet has a
volume 2x10-23m3, 10 nm in diameter and 100 nm in length, with a lifetime of a picosecond. It
is in the jet where the high densities are reached via z-pinch SF EM pressures producing very
high-densities, 1027D/cc, of very compressible bosons in the jet and cluster. The jet sheath
electrons produce the EM compression pressures perpendicular to their Mach 20 velocity
vector. The jet, located close to a 100 micron thick target foil, implants electrons and then
deuterons into the foil lattice to form a cluster. See figure 1 - 1, 2. What is increasingly evident
is that high-density experiments of ICF and the astrophysical relations of deuterons and
electrons, bosons and fermions, add a great deal of reality to the picture of this transient jet and
cluster [13].
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The Path and Experimental Evidence
A connection between experimental evidence and transient high densities is shown. During

the target implantation, electrons and deuterons, are momentarily separated as deuteron clusters
and free electrons moving back to the cluster reacting with outer deuterons squeezing the
cluster. The transient deuteron clusters are stabilized for a picosecond by their high-density
(close packed structure), the de Broglie wave in the cluster producing a coherent BEC. See
figure 1 - 3, 4.

In the closely packed cluster deuterons the shockwave initiates the 4He fusion event. See
figure 1 – 4, 5. The favored path produces heat and not gamma radiation [14]. The fusion heat
pulse destroys the very high-density cluster and as the spherical heat pulse passes into the target
foil lattice, it reaches the foil surface producing an ejecta site. See figure 1 – 6. The nm size
ejecta sites are easily photographed using SEM analysis. In piezo systems that resonate at 20
KHz, the heat pulse’s vaporous ejecta were expelled into the circulating D2O, where the fusion
products, 4He and heat, are circulated and measured. This explains why little of the 4He fusion
product is found in exposed target foils.

The SEM photos show an uncountable number of ejecta sites. Several SEM photos of Pd
foils have been analyzed by counting one square µ2 areas of exposed target surfaces to find the
distribution of the diameter sizes of ejecta sites. The plots of site diameters versus their number
show a skewed distribution. Assuming that the depth of the ejecta site is the same as its
diameter, the volume of the spherical heat pulse and ejecta relate to ejecta energy. A clear
maximum for ejecta site diameter distribution was found to be near 100 nm. This falls off
rapidly as the ejecta site diameter increases for multiple fusion events. Using these ejecta
volumes and site diameters a conversion to about 20 +/- 10 Mev is the expected value for a
single DD fusion event. The exposed target foils show surface distribution of ejecta sites in the
form of permanent surface patterns of standing waves.

Gases from 20-KHz experiments were collected from directly over the SF reactor’s
circulating D2O. This gas was expanded into 50 cc evacuated stainless steel cylinders for MS
measurement, which was performed by Brian Oliver in a DOE laboratory specializing in
helium MS analysis of the gas samples. The data from sample cylinder #3 measurement for
4He, using three different small aliquots of gas from the sample cylinder, shows the average
number of 4He atoms that were in the sample cylinder to be 7463 × 1014 4He atoms of with a
sigma of +/- 1. Only 50% of the gas in the experiment was collected in the sample cylinder.
The remaining helium was equally distributed throughout the circulation volume. So the total
4He was 1.5 × 1018 atoms. The calculated 4He in the gas sample was 552 ppm, which is 100
times that found in atmospheric air. This experiment produced 80 watts with respect to helium
production over a 19 hr. period. 64 watts of excess heat was measured by calorimetry. (B.
Oliver’s data is on DVD shown at ICCF-14 Wash. DC, 2008.)

The determination of excess heat was done using the D2O flow-through calorimetric
measurements of the 1.6 MHz piezo driven, low mass, 20 g device [15]. Measured the
temperature of the D2O flow into and out of the device, DT, and its flow rate in cc/s were
measured, these two were multiplied together to give calories/s. This result is multiplied by
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4.184 Joules/calorie to give Qo. Now, Qo was the sum of Qa and Qx. The efficiency of Qi was
measured at 0.33 [2] so Qa = .33 Qi. Some of Qi powered a transformer and the 1.6 MHz
oscillator. That is the basic calorimetry.

The experimental data for the 1.6 MHz device data is plotted in the web site
www.sonofusionjets.com. [4] The series of runs is listed in the table shows increasing values of
Qi, SL, and Qx. Qx reaching a maximum of 40 watts, with a Qa of 16.5 watts, and a Qi of 50
watts. A one second was the residence time for D2O in the reactor volume and a flow rate of
1cc/sec. The external pressure was one atmosphere of argon. The SF device used a joule heater
replacing Qa in the calibration mode. One must be careful to guard against radio-frequency
interference during thermocouple measurements and heat lost via device’s surface convection.

Summary
The robust 1.6 MHz SF device can be ganged together to make high energy-density systems

of any size. SF can serve in the work place as space heating where about 0.3 of the grid power
is used today. With future improvements it will be a self-supporting unit using thermoelectric
devices to convert heat directly to electricity [2]. SF applied to space travel has the advantage
of a high power/mass ratio. SF is a million times more mass efficient than hydrocarbon fuels or
a O2 + H2 mix. This paper is about transient densities with parameter control of temperature,
pressure, and acoustic input.



416

Figure 1. Six steps to SF.
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Abstract
In this work a new method of generating hard radiation with a cavitation
chamber is presented. This mechanism is connected with the sequential events
of cavitation and shock-wave processes inside the chamber with liquid, and in
the volume of the chamber wall when there is perfect acoustic contact between
them. The result of the tandem action is the passing of the cavitation energy
from the cavitation area across a stream of running liquid to atoms situated on
the external surface of the chamber. Shock excitation of these atoms leads to the
generation of X-rays outside of the cavitation chamber.

1. Introduction
The cavitation phenomenon is one of the most promising perspective physical mechanisms

for the realization of low energy nuclear interaction. It is very important to understand the
nature and mechanisms of radiation processes that are connected with the cavitation. In our
earlier works [1,2] the anomalous optical phenomena accompanying cavitation processes from
directed motion of running liquids through thin dielectric channels to large-size working
chamber were investigated.

A schematic of the experiment is shown in Fig. 1. The cylindrical cavitation chamber is 15
cm long, with a diameter of 8 cm, and is made of Plexiglas. Inside the chamber the special
diaphragm with an orifice hole is situated. It is 1 mm in diameter, 2 cm in length. To observe
the optical effects two opposite lateral faces of the cylinder have been vertically cut. Within
these faces the thickness of the wall is increased from 2 to 3 cm.

Orifice hole
Liquid
pump

Diaphragm
Working
chamber

Figure 1. Schematic and overall view of the experimental setup
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Experiments on stimulation of cavitation in pumped liquid (spindle oil) were performed with
a step-by-step increase of pressure. At low pressure (P20 atm) the color of moving oil in the
working chamber is tawny (Fig. 2a). At P25...30 atm the process of formation of cavitation
bubbles in the volume behind the orifice starts. At such pressure the processes of initial
turbulence and the generation of large size fluctuations of machine oil density take place. These
fluctuations are visible. At P35...40 atm the averaged size of any fluctuation becomes small.
The space behind the orifice hole is similar to a fog without any transparency and has the color
like milk instead of the initial tawny color (Fig. 2b). At P60 atm a rapid increase of
transparency of the turbulent oil takes place. As a result the chamber with cavitations at the
downstream of the orifice hole becomes completely transparent (Fig. 2c). As the liquid pressure
increases up to 80-90 atmospheres, in the central part of the chamber the directed bright light
beam is shaped (Fig. 2d).

Figure 2. General view of the working chamber: a) at low pressure (P<20 atm) of moving oil; b) at the
beginning of the cavitation process (P=25...40 atm); c) at separation of the liquid stream from the chamber

walls at the condition  of intensive cavitation (Р>60 atm). d) Bright luminescence of the directed liquid 
stream with cavitation bubbles (Р80...90 atm).

It is obvious that this bright luminescence of the directed liquid stream is connected with the
cavitation process, but it differs greatly from usual low intensity sonoluminescence (which is
equilibrium thermal optical radiation from the heated portion of the machine oil in the volume
of the cavitation area). In previous papers [1,2] several possible mechanisms of this bright
luminescence were proposed, but a definitive conclusion has not been reached. In the present
work the results of investigation of X-Ray radiation processes connected with cavitation
phenomena in running liquids are presented. It will be shown that formation of bright visual
luminescence is also connected with these processes.
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2. Investigation of characteristic X-ray generation from the cavitation
phenomena

After a detailed examination we have found that at critical regime of bubble cavitation, the
process of stationary generation of X-radiation with energy of 1 to 2 keV (or more) takes place.
This radiation is detected outside the cavitation chamber at about 3 mm from the external
surface.

To detect the radiation, an X-Ray and gamma detector XR-100T-CdTe with CdTe
monocrystal was used. Cylindrical collimator of the detector had a length about L  6 cm and
an internal cross-section S0  0.5 cm2. The solid angle of detection was   0.02 sr. The
entrance cross-section of the collimator was closed by a very thin Be foil.

The results of X-Ray detection are presented on Fig. 3. Registration of such soft X-ray
radiation with energy of about 1...2 keV (which is connected with the cavitation phenomena
inside the chamber) outside of the thick-walled cavitation chamber is, at first sight, very strange
because of the very low absorption mean free path (less than 10-20 microns) in the oil and
Plexiglas.

We have studied this paradox using different methods.

Figure 3. The change (shift) of the X-Ray spectrum that was detected near the surface of the cavitation
chamber at stage-by-stage increases of oil pressure (left to right - 20, 40 and 65 atm).

2.1. Controlled stimulation of generation of additional X-radiation
Finely-dispersed copper powder was placed on an external surface of the chamber (on its flat

surface). Acoustical contact of this powder was ensured by using a special acoustic gel. It was
shown that the presence of copper powder during cavitation leads to generation of additional
hard radiation with the energy in a maximum nearby 3...3.5 KeV (Fig. 4a). When thin copper
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foil (thickness 0.1 mm) was situated in front of detector window there is a natural screening of
softer part of the spectrum (Fig. 4b).

Figure 4. Spectrum of X-Ray radiation outside of the chamber during cavitation in the presence of: a)
copper powder, mechanically and acoustically connected with its external surface; b) the same powder and

additional thin copper absorber which has not been mechanically connected with the chamber.

2.2. Investigation of space distribution of X-radiation sources
We have studied the dependency of intensity of the hard part of X-radiation J(x) on the

distance between the detector window and the surface of the chamber that was covered by
copper powder. A schematic of the experiment and resulting dependency J(x) are presented in
Fig. 5.

From Fig. 5 it follows that maximal intensity of X-radiation correspondents to xopt  3.5...4
cm.

Fig. 5. Schematic of experiment. a) and the dependency of the X-ray registration intensity J(x) on the
distance between the detector and the surface of cavitation chamber b).

Let us consider the same effect from another point of view. This dependency J(x) is

described by the obvious expression  
2 /( ) (0) 1 / x lJ x J x L e  ( l - absorption path of X-

quanta in air).
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From this formula it follows that maximal intensity of registered X-rays will be at the

distance 2 0optx l L   . From the last equation we have   / 2 4optl x L cm   . In air such

value of l corresponds to the energy of X-radiation EX3...3.5 keV that was earlier

independently determined by the detector!

So the sources of X-radiation really really are situated on the chamber surface.

2.3. Investigation of acoustic impulses generated by cavitation bubbles in the running
liquid

To measure the acoustic impulses on the surface, a piezoelectric converter with a diameter of
20 mm and an oscilloscope were used. This converter was attached to a flat surface of the
chamber. Figure 6 shows a time sample of acoustic converter signal with the duration of 100
microsecond at P = 37 atm and T= 37oС, and the spectrum of this sample. The averaged 
amplitudes of acoustic impulses of pressure on the surface are x200-300 A.

Figure 6. Time sample of the acoustic impulses on the surface of the cavitation chamber a) and Fure-
spectrum of the sample b)

2. Combined both cavitation and shock wave mechanism of the generation of
characteristic X-ray radiation outside the strongly absorbing cavitation
chamber

The typical evolution of any bubble cavitation process in unbounded liquid is described by a
strict succession of the physical processes: a) formation of micro-nucleus of a gas bubble in the
compressed liquid; b) the beginning of growth of a gas bubble in the tensioned liquid; c)
growth phase of a gas bubble (growth speed of the bubble is less than the speed of sound); d)
the phase of unstable balance at the maximum size of the bubble; e) the phase of bubble
collapsing (the speed of squeezing is more than the speed of sound); f) the collapse ends with
an explosion and the formation of a divergent shock wave with supersonic speed.

The same process takes place in the liquid stream moving through the thin channel in the
volume of the cavitation chamber (Fig. 7). Interaction of divergent shock wave with internal
surface of thick wall of cavitation chamber leads to the formation of a sound wave inside wall
that transforms to the shock wave at this wall. Subsequent reflection of this shock wave from
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the external surface of thick wall leads to surface atoms excitation and external X-Ray
generation.

Figure 7. Schematic of transformation of the energy of bubble cavitation collapse to the outside X-ray
radiation: 1) - cavitation collapse; 2) acoustic impulse; 3) shock wave in liquid; 4) formation of elastic wave
in the wall of the cavitation chamber; 5) shock wave in the wall of the cavitation chamber; 6) excitation of

surface atoms of the cavitation chamber during the reflection of shock wave; 7) and 8) internal and external
surfaces of the cavitation chamber wall.

The process of atom excitation from the action of a shock wave is the result of atom pulse
acceleration during the reflection of shock wave from the border between chamber wall and air.
This effect may be calculated by the theory of abrupt acceleration. The probability of atom

excitation (e.g. 0 01 2s p ) at abrupt acceleration from v=0 to the velocity of shock wave v=vsw

is the following:
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At intermediate pressure (P=25...60 atm) the liquid jet touches the internal surface of the
chamber wall. It leads to the passing of the energy from the cavitation area across the running
liquid and chamber wall to atoms situated on the external surface of the chamber and to the
external X-Ray radiation.

At high pressure (Р80...90 atm) the liquid jet does not touch the internal surface of chamber
wall and the cavitational shock waves leads (through the reflection from the jet-vacuum border)
to the excitation of liquid jet surface atoms and to the subsequent generation of optical and X-
ray radiation in the jet. This generation was observed in our earlier experiments (see Fig. 2d).
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Introduction to Materials

The outcome of a LENR experiment depends on several major things, the scientist
conducting the experiment, the procedures employed, the equipment for the experiment and the
materials within the experiment. All of these things are important. The skill, experience,
intuitions and hard work of the experimenter are clearly critical. The protocols used during an
experiment, such as the time history of applied voltages, also largely determine the results. The
performance, stability and precision of the apparatus greatly influence the outcome. And,
materials are absolutely central to any LENR experiment. What happens to the matter and
energy put into the system depends on the contents of the experimental system. Adequately
characterized materials constitute one of the most critical and most vexing aspects of LENR. It
is not agreed if the LENR effects arise only on surface or at boundaries or if they are a bulk
property or even what is the appropriate scale of consideration – nuclear, atomic or both.

Whether the LENR experiment is electrochemical, gaseous, plasma or a beam in terms of
loading hydrogen isotopes into lattices, the elemental and molecular materials within the
central cell can vary widely, and are both difficult to know and control. Knowledge and
manipulation of low levels of impurities are particularly difficult.

Beam experiments are conducted in vacuum systems that can be pumped to very low
pressures and heated to drive off many impurities. They, along with gas permeation
experiments with one side of the Pd or other foil in a vacuum, are generally the cleanest LENR
experiments. The incident beams are carefully controlled in direction and energy. Hence, even
though they carry much kinetic energy, they usually do not make the experiment “dirty”.
Spectroscopic and other tools can be used to perform qualitative and quantitative analysis of
impurities in situ before, during and after runs.

Plasma experiments are also conducted in vacuum vessels. They are first pumped down, and
then filled with low pressures of the gases, which will be ionized to form the plasma. In LENR
experiments, the plasmas are commonly a glow discharge but sometimes an arc discharge.
Many of the analytical tools applicable to vacuum systems can be used for analysis of plasma
loading experiments. Others, like optical spectroscopy, are very useful for monitoring plasmas.
However, the ions and photons in and from plasmas go off in most directions. Their impact
with nearby solids, including the materials to be loaded with H or D, leads to sputtering and
contamination of the experiment.

Gas loading experiments are usually conducted in a strong vessel that can be pressurized and
heated. Such vessels can be purged, cleaned and filled with high purity gases prior to
experimental runs. The thermal energies in such experiments are relatively low compared to
beam and plasma experiments. Here again, many in situ diagnostics can be brought to bear.
However, some incisive analytical methods require vacuum conditions for their operation, so
they are excluded from use in gas experiments when the gas is present.

Electrochemical LENR experiments can be relatively clean if great care is taken to start with
clean equipment and high purity chemicals are used. Both light and heavy water with high
purity are available. And, the salts that dissolve to form the electrolyte can also be obtained



426

with few impurities. However, the container that forms the cell and any other materials in
contact with the electrolyte can provide contamination. The range of diagnostics that can be
used within electrochemical cells during their operation is more restricted than in the other
types of loading. There is no agreement on what purity is required. For example, the original
experiments suggested that materials that were too pure did not produce FPE heat. Subsequent
work has found that stress induced by loading hydrogen causes the metal to crack and that low
levels of alloying elements can prevent cracking.

The “joker” in all of these types of loading approaches is the solid material(s) put into the
heart of the experiments, the materials in or on which the LENR occur. They vary greatly in
their composition, that is, the elements present and their spatial distributions, both of which can
change with time. And, the structural arrangements of the atoms on nano-, micro- and macro-
scales before, during and after an experiment also vary widely. The interactions of the
experimental protocols with the composition and structure of the cathodes, other electrodes and
probes within experiments are both central to the outcome and poorly known in most cases.

Impurities from any source might either promote or degrade production of excess power.
They could be deleterious to the point of poisoning an experiment. Or, they might be beneficial
to the extent of enabling power production. These very fundamental possibilities are little
explored and essentially not understood at this time.

That features of key materials in LENR experiments are not known adequately should not be
surprising. After all, nuclear reactions take place on size scales of femtometers, the metric for
nuclear dimensions. This scale is 100,000 times smaller than the scale of atoms. Nanometers
are the scale at which proper conditions for the occurrence of LENR probably take place. But,
the tools of nanotechnology for determining the type and locations of atoms and molecules are
yet to be widely brought to bear on LENR experiments. Part of the reason is lack of funding.
But, even if atomic force microscopes and other atomic-scale probes were available for
analyses before, during and after runs, there is the problem of their small fields of view. It is
likely that LENR do not occur uniformly over the surface of a cathode in, say, an
electrochemical experiment. Repeated scanning of a small patch, typically 100 micrometers
square or smaller, with an AFM could miss the locations of LENR, either by bad luck or
because the probe destroys the critical conditions. The situation could be like the old story of
looking for lost keys at night only under the street lights. In short, the composition and structure
of cathode materials on the nano-meter scale is probably critical to production of LENR, but
very difficult to access experimentally in a meaningful way.

Three papers on materials were given at ICCF-14. They are the result of collaborations
between scientists from three laboratories, ENEA in Italy and the Naval Research Laboratory
and SRI International in the US. The collaboration of these three laboratories, which reported
their current results in an on-going program, represents the most thorough approach to the
study of materials in this field.

The first paper on materials was an invited presentation by Violante et al, which involved
correlations between impurities, metallurgy of Pd foils, loading (D/Pd) and production of
excess heat. It was found that contaminants control the crystal orientation during annealing of
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the foils, and the effects of subsequent chemical etching. The power spectral density (PSD) is a
measure of the magnitudes of roughness on the surfaces of the foils. It was measured after
etching. Samples that produced excess power had peaks in the PSD in the range of 106 to 107

m-1. That is, surface roughness in the range of 0.1 to 1 micrometer favored production of excess
heat. Further, it was reported that the surface crystallite orientation of <100> also favored
power production. The <100> face in Pd is the most open crystallographically, which might
help with loading and the occurrence of LENR.

The second materials paper by Sarto et al provided details of the characterization of Pd foil
surfaces. The data were obtained by use of an Atomic Force Microscope (AFM). This is one of
the very few instances when that central tool of nano-science and –technology has been use for
materials in LENR experiments. The data obtained by 2-dimensional square scans of the foil
surfaces, generally 24 micrometers on a side, was used to compute PSD. The foils were then
used in electrochemical calorimetric experiments to test their ability to produce excess heat.
The results were stated in the last paragraph above.

The third paper on materials from the tri-laboratory collaboration by Castagna et al, gave
details of the metallurgical treatment of the Pd foils and the measurements of their surface
texture, that is, the orientation of surface grains. Correlations between the ability to produce
excess heat and several materials parameters were obtained. They include mean grain size,
grain orientation, grain boundaries, hardness, and deuterium loading. This is the work that
showed <100> crystallite orientations favored production of power.

Miley and his colleagues presented a materials paper on the evidence for the formation of
clusters of deuterons at dislocations within Pd cathodes in heavy-water electrochemical
experiments. Such nanometer-scale features are thought to be the locations at which LENR
occur. Hence, their increase is desirable. These authors discuss ways in which the density of
deuteron clusters can be increased, which they call a “Roadmap to Power Cells”.

Swartz and Verner provided a paper on the spiral cathode (called a Phusor™) used in their
electrochemical experiments. The paper makes the case that the spiral structure is a
metamaterial. Such a material gets its electromagnetic properties from the structure (shape) of
the material, rather than from its chemical composition. The authors report that their cathode
shape is the best among many designs and variations for reproducible behavior with good
power gains, and that such is the case for several Group VII metals. The electric fields
associated with the spiral cathode were computed. The authors focus on the intra-electrode flux
of deuterons, which is due to the electrical field distributions that cause asymmetric deuteron
entry into the cathode. The authors believe that such deuteron fluxes are necessary to produce
LENR.

The papers on materials presented at ICCF-14 illustrate the complexity of the study of
materials for LENR experiments. There are many options for acquisition of the base materials,
processing prior to experiments and conduct of the experiments. Numerous experimental tools
are available for the characterization of the materials at any step in the overall process, and after
experiments. Sophisticated and expensive equipments, which generally require skilled
scientists for their operation and interpretation of the data obtained, are needed. The work is
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slow and requires great attention to details. Hence, the study of materials for LENR
experiments is costly. Few research efforts in LENR have the funds to carry out these desirable
characterizations of materials.
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Abstract
A recent joint work [1] identified the crucial role of material science in
improving control of the Pd-D system to enhance the production of excess
power during electrochemical loading of palladium foils with deuterium. Very
high reproducibility, close to 100%, in loading Pd up to D/Pd ~1 (atomic
fraction) was achieved. High loading about the threshold value of 0.9 is
considered necessary to achieve the effect. This work demonstrated it is
necessary but not sufficient. As a consequence, the focus of our research moved
to the material properties of cathodes, especially surface characteristics, and an
effort to correlate these properties with cathode performance during electrolysis.
This paper describes the material properties examined that appear to produce
excess heat.

Introduction
Recent evidence indicates that the Pd material plays a fundamental role in the occurrence of

excess heat production during electrochemical loading of palladium cathodes with deuterium.
This evidence has created a mounting interest in aspects of research related to material science.

A broad effort was carried out in the past to identify the mechanisms controlling hydrogen
isotope dissolution into the palladium lattice during the loading process. The study helped
define a proper metallurgical treatment to obtain the most suitable metallurgy to facilitate
hydrogen absorption into the palladium cathode [2]. This work generated almost 100%
reproducibility in achieving a deuterium concentration larger than 0.9 (atomic fraction) that is
considered to be the threshold value for observing the effect.

This experimental work also demonstrated that the concentration threshold is a necessary
condition for excess heat production, but not necessarily a sufficient one. Such evidence led to
a systematic effort to improve knowledge about the status of the material that is required to
have the effect.

Let us start from the most significant experimental evidence obtained from a statistical
analysis of the data. Three different behaviors were observed with Pd cathodes loaded above
the threshold D/Pd = 0.9:

(1) High power gain during the excess.
(2) Low power gain during the excess.
(3) No excess.
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McKubre identified two types of excess power production:

Type A: excess power begins after several days of electrolysis and, in general,
depends on the current density.

Type B: excess begins very soon and does not always depend on the current
density.

The research described in this work is largely oriented to studying the main differences in
materials that produce these two different types of excess power.

Lot-1 and Lot-2
Two different lots of palladium, obtained from the same producer, exhibited remarkably

different behavior during the experiments, even though both lots underwent the same
metallurgical procedures.

Figure 1. Experiment L17, evolution of input and
output power: excess 500%

Figure 2. Evolution of input and output power in
experiment L39

These two materials served as references in the investigation to identify material that
produces the Fleishmann-Pons (FP) effect. The two lots are designated Lot-1 and Lot-2. Lot-1
gave Type B excess power with, in some cases, power gains well above 100%. Figure 1 shows
the evolution of the input and output power in experiment L17, performed with a sample from
Lot-1. During the main burst that continued long enough to allow the calorimeter to reach a
fairly steady state condition, the power gain was up to 500%. The reduction of the input power
during the burst occurred because the excess power increased the electrolyte temperature,
causing a reduction of impedance of the electrolyte, so that the galvanostat reduced the voltage
to maintain the current at the set point value. This lot successful produced excess heat in 75%
of tests at SRI and up to 60% at ENEA.

Different behavior was produced by samples from Lot-2. As mentioned above, this lot was
obtained from the same producer and had identical characteristics and purity (both 99.95%).
Lot-2 gave Type A behavior with excess power of less than 20%. Loading up to the threshold
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level required higher current compared to samples from Lot-1, and the reproducibility of excess
power production was lower (less than 20%). Figure 2 shows evolution of the input and output
power in the experiment L39, performed with Lot-2 material.

Such an experimental difference, based on a significant number of experiments (more than
40), led to a comparative analysis of both raw as-received samples and samples following
metallurgical treatments. The first test was a qualitative check for the spectrum of contaminants
in the two lots. Fig. 3 shows such a spectra, obtained with SIMS analysis (with sputter erosion).
It is evident that some species that are completely absent in Lot-1 are contained as
contaminants in Lot-2, for instance Zr. Contaminants may act on grain size, crystal orientation
and grain boundaries, so that a different metallurgy may be expected for samples obtained from
the two different raw materials, based on differences in the spectra of contaminants.

Scanning electron microscopy (SEM) performed on samples obtained from Lot-1 and Lot-2
after the same treatment steps are confirming this effect. Fig. 4 and Fig. 5 show the metallurgy
of samples obtained from Lot-1 and Lot-2, respectively. The main difference is the grain size,
being larger for the sample from Lot-1. This difference may be ascribed to the different
spectrum of contaminants, with Lot-1 containing fewer grain boundary pinning constituents.

Figure 3. Spectra of impurities for Lot-1 and Lot-2, qualitative analysis (SIMS with erosion)
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Figure 4. SEM microscopy of a sample from
Lot-1

Figure 5. SEM microscopy of a sample from Lot-2

Figure 6. Effect of an iron particle on etching Figure 7. Effect of a dust particle on etching

Crystal orientation after metallurgical treatment was studied by means of X-ray diffraction.
The results for Lot-1 indicated these samples to have a well-aligned <100> surface normal, as
shown by very sharp X-ray spectra with little or no <110> present. Lot-2 samples had a mix of
<100> and <110> surface normals, with the spectra not as sharp as for Lot-1. A third lot of
material with a different spectrum of contaminants underwent the same metallurgical and
thermal procedure, yet revealed instead mostly <110> and very little <100> surface normal
orientation. Cathodes fabricated from this third lot produced no excess power.

A statistical analysis of the collected experimental data revealed that Type B excess power
was correlated with <100>-crystal orientation with a correlation factor very close to 0.8 [3].
The different experimental behaviours observed indicate that crystal orientation may be
considered a second condition required to produce excess power.

It is very well known from the literature that contaminants modify the effect of chemical
etching on surface morphology [4]; Fig 6 and Fig.7 show the effect of etching a Pd sample with
either an iron or dust particle, respectively. Also, crystal orientation has an effect on the surface
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morphology, and surface morphology as well as crystal orientation has a non-negligible role on
electrode kinetics [5]. Observations of different Pd surface activity were identified by Rolison
using SEM of etched Pd foils [6].

Material Status and Excess Heat Production
The resulting question is: how do these differences in the status of the material relate to

excess power production? The first answer is that the excess power is correlated to the loading
dynamics, and the loading dynamics depend on the material status. The evidence is highlighted
by the following analysis. Figure 8 shows the ratio between the maximum loading value and
the current required for such a loading, an indicator of ease of loading. Cathodes showing good
loading at low current, in general, have produced excess power. Furthermore, the easier the
loading, the higher the probability is that Type B (red bar) excess power will occur. The
correlation factor between the occurrence of the Type B excess heat and easy loading is
g=0.813. See ref [3] for additional statistical data.

Preliminary statistics from this report show that:

(1) Contaminants control the crystal orientation during annealing.
(2) Crystal orientation and specific contaminants modify the effect of chemical etching,

leading to a different surface status.
(3) The surface morphology modifies the operating conditions in the electrochemical process.

Figure 8. Ratio between the maximum loading value and the current required for such a loading.

We conclude that the status of the surface is a third condition needed to produce excess heat.
The Power Spectral Density function (PSD), defined as the squared modulus of the surface
roughness Fourier transform, was chosen as a figure of merit representing the status of the
surface [7]. The PSD function, after surface etching, was found for samples giving excess
power, as in Fig. 9, to have peaks in the wave vector interval 106 – 107m–1. The statistics also
revealed that the amplitude of the excess power correlates with the amplitude of the PSD peaks.
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On the basis of the results described here, work was carried out to produce material
characterized by:

(1) Spectrum of contaminants quite close to the Lot-1 spectrum.
(2) <100> crystal orientation.
(3) Proper metallurgy for easy loading.
(4) PSD characterized by the presence of peaks in the wave vector range 106 – 107 m-1.

Figure 9. Power Spectral Density (PSD) function of sample L25 producing excess power

Figure 10. PSD of sample L46, peaks in the identified region are revealed
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Figure 11. Evolution of the input and output power during experiment L-46: Excess up to 12% was
observed and the amplitude results to be proportional to the PSD peaks amplitude

These characteristics were achieved with sample L46, and this sample underwent a
calorimetric test with heavy water. Figure 10 shows the PSD of sample L46. We observe that
the amplitude of the peaks is lower than given by sample L25, which produced excess power
up to 250%. As shown in Fig. 8 the loading of sample L46 was satisfactory. The calorimetric
result for this sample is shown in Fig. 11. We observed excess power up to 12% that
disappeared completely when the input power exceeded 300 mW.

This result is not extraordinary in terms of power gain, but has a non-negligible value since it
represents the first reproduced excess power based on a “designed” material. Furthermore, it
provides additional evidence that proper surface morphology, combined with appropriate
metallurgy for loading, and with <100> crystal orientation is a third condition for producing
excess power. Obviously statistics confirming the result is required, and an enhanced surface
analysis study should investigate a wider region of the wave vector range.

Conclusions
Characteristics have been identified that cause different cathode behavior. The probability of

excess heat is enhanced when three conditions are met:

(1) Loading is easy at a relatively low current density due to proper metallurgy.
(2) <100> Crystal orientation.
(3) Identified surface morphology by PSD.

A sample demonstrating the three conditions was made, and production of excess heat was
observed. Work is in progress to identify other correlations and, on the basis of the material
characteristics, the mechanisms producing the effect.
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Abstract
The introduction of hydrogen into a metal during electrolysis of water involves
primarily the metallic surface. The effect of surface morphology on
electrochemical reaction kinetics is well described in the literature [1] therefore
it seems to be reasonable to assume that the surface morphology of the cathodes
could play a role in the electrochemical metal-hydride formation. Actually, a
wide variety of surface features and profiles have been observed in the Pd
cathodes typically employed in excess heat production experiments. These
features are noted in both the as-prepared samples and the electrolyzed ones. In
order to establish a correlation between the occurrence of a particular surface
morphology and calorimetric results, it is necessary to identify a useful metric
with which to describe and compare the different surface morphologies. In this
work an approach based on Atomic Force Microscopy (AFM) has been
investigated. The method is oriented toward the identification of parameters
suitable for a pre-screening of the materials.

Introduction
In recent years we have begun a research project focused on the study of the material science

aspects of cold fusion. In particular, the preliminary results have pointed out a strong
correlation existing between the metallurgical and surface properties of the Pd cathodes used in
electrochemical experiments, and the occurrence of excess heat production [2]. We investigated
cathode features including both bulk features (crystallography, deuterium loading,
electrochemical behavior, hardness) and surface characteristics.

In this paper, we concentrate on the study of the surface morphology of the Pd electrodes,
leaving the other aspects of material science to other papers [3],[4]. In particular, we limit our
analysis to the length scale of a few micrometers, which characterizes the surface morphology
“inside” each crystal grain. Grain boundary features fall outside this range, and they have been
considered elsewhere [3],[4].

The experimental analysis has been carried out by Atomic Force Microscopy (AFM). This
technique [5] is able to collect tri-dimensional surface morphology maps, with spatial
resolution up to a fraction of a nanometer. The digitized images have been elaborated to extract
numerical parameters and parametric functions, which could make the comparison between the
various samples easier and more objective. The numerical procedure, based on the computation
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of Fourier transforms, aims to define a surface status function that can describe and compare
the surface morphology of different samples, and also to outline correlations between the
surface morphology and the excess heat production.

Experimental
The Pd samples investigated in this work were obtained from different commercial lots of

pure Pd, having nominal purity above 99.95%. They have been processed by mechanical,
thermal and chemical treatments described elsewhere [2], in order to reduce foil thickness to
about 50 μm, and to improve metallurgical properties and surface morphology. Most of the 
samples were mapped by AFM before being electrolyzed, to avoid measurement problems
caused by dirt on the surface. Actually, surface morphology changes have to be expected
during the electrochemical process and, obviously, this modified morphology plays a role in the
excess heat mechanism. By measuring the samples before electrolysis instead of after it, we are
mainly interested in establishing a correlation between the initial cathode characteristics and the
occurrence of excess heat, with the aim of developing instructions for “good” cathode
manufacturing.

For each sample, several images have been taken at different points on the surface, excluding
zones close to grain boundaries. The AFM instrument (Assing Corp., “Perception” model) is
installed at the ENEA laboratory at the Frascati research centre. The instrument is equipped
with a pyramidal silicon nitride probe (Veeco, MLCTAU) and is operated in contact mode.
Comparison between samples has been performed by using images that were acquired on the
same length scale (typically 2424 m2) and with the same number of pixels (typically
257257), to avoid experimental and/or numerical artifacts that could affect different samples
to varying extents.

Image analysis
The AFM directly measures the 3-D surface height profile of the sample surface. This is

different from images acquired by other microscopic techniques, such as scanning electron
microscopy or optical microscopy, in which the contrast is not directly related to the changes in
height profile, and 3-D profile reconstruction requires stereoscopic methods. The height
profiles of non-engineered surfaces, as those of the samples investigated in our study, are
generally characterized by random fluctuations superimposed on periodic or quasi-periodic
patterns. These surface features are hard to recognize in direct space, but can be effectively
revealed in reciprocal space of the spatial frequencies (kx, ky), by computing the Power
Spectral Density (PSD) of the height profile. The PSD function provides a decomposition of
the surface profile into its spatial wavelength components. Mathematically, the PSD (that we
indicate in the following as PSD2D(kx, ky)) is defined as the squared modulus of the Fourier
transform of the 2-dimensional surface height profile (than we indicate as h(x,y)). Assuming the
surface profile to be the result of the linear superposition of an infinite ensemble of sinusoidal
profiles, each with a different periodicity along the x and y axis directions, the PSD indicates
the weight of each sinusoidal component having a precise periodicity, as a function of the
spatial frequencies, which correspond to the inverse of each period length. As an example, a
surface characterized by an infinite sinusoidal profile has a PSD spectrum consisting of just one
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fundamental peak; on the other hand, a random surface has a PSD spectrum extending over a
broad range of spatial frequencies.

Commercial software for image processing is commonly suited for computing the
1-dimensional PSD of isotropic and stationary random surfaces. In that case, the surface profile
fluctuations measured along any straight path of the surface are assumed to be independent of
both the path direction and origin, so that the 2-dimensional PSD reduces to a 1-dimensional
function (PSD1D(|k|)), which depends only on the modulus of the frequency vector 5.

In the case of anisotropic and textured surfaces, the computation of the 1-dimensional
isotropic PSD may wash out the information about embedded patterns and periodicities, if the
computational path is not carefully chosen, and it also cannot outline the height profile
anisotropy. This is indeed the case for the samples studied in our work, which are characterized
by a strongly anisotropic texture, related to the crystalline structure of the grain. To solve this
problem, we have developed software to compute, from the 2-dimensional PSD, a set of
1-dimensional PSD functions, which can give insight also in the anisotropy of the surface,
extracting the more relevant patterns. These additional functions are defined below, starting
from a representation of the 2-D PSD in polar coordinates (PSD2D(|k|, ), where (|k|, ) are the
polar coordinates of the reciprocal 2-D k-space) instead of Cartesian coordinates (PSD2D(kx,
ky)):

 The Radial Power Spectral Density (RPSD(|k|)), is the average of the polar 2-D PSD
(PSD2D(|k|, )) over all polar angles ();

 The Angular Power Spectral Density (APSD()), is the average of the 2-D PSD2D(|k|, )
over all k moduli, along the direction of each k polar angle .

 The Maximum Radial Power Spectral Density (R@max(|k|)) is obtained by taking the
values of the 2-D polar Power Spectral Density along the k vector direction identified
by the polar angle max, which is the abscissa for the maximum of the APSD() curve.

In Fig. 1 the 2-D k vector space is represented in polar coordinates, and the domains involved
in the computation of the Radial (Fig. 1a), Angular (Fig. 1b) and Maximum (Fig. 1c) PSD
functions are indicated.

The numerical procedure developed to compute the above functions consists of the following
steps:

1. The AFM 2-D digital image is converted to a matrix NN.
2. The PSD2D(kx, ky) matrix is calculated from the 2-D fast Fourier transform (FFT) of the

digitized image.
3. The polar PSD matrix (PSD2D(|k|,)) is obtained from the PSD2D(kx, ky) matrix, by data

interpolation.
4. The Radial, Angular and Maximum Power Spectral Density functions are computed

according to the above definitions.
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Figure 1. Polar representation of the 2-D reciprocal space in which the 2-D PSD is defined; the light blue
areas indicate the domains on which the PSD2D is averaged to compute the Radial Power Spectral Density

(Fig. 1a), the Angular Power Spectral Density (Fig. 1b) and the Maximum Power Spectral Density (Fig. 1c).

The analysis has been repeated for different images taken on different sample points (within
the same crystal grain), showing similar results within the same crystal grain.

Because of the finite sampling rate and limited scale length of the digital AFM images, the
computed PSD functions are band-limited over the space of wave-vectors k. In particular, the
low frequency cutoff is determined by the scan length, while the high frequency limit is
determined by the sampling rate and by the tip geometry. In the present work, the typical wave-
vector range is 0.2 – 30m-1.

Results and Discussion
The Power Spectral Density spectra of samples giving excess heat have been computed to

look for common features. A preliminary screening of the data has outlined a particular “multi-
peaked” structure in the Maximum Power Spectral Density function of the samples that gave
excess heat (see Fig. 2 right), while this feature was not observed in the samples that did not
give excess heat (see Fig. 3 right).

The peak intensities of the analyzed features scale with the peak wave number, which ranges
from 1 to 4 m-1. The similarity in the R@max(|k|) spectrum is indicative of the presence of a
pseudo-periodic texture embedded in the surface morphology, with a period in the range of
some tenths of microns. Furthermore, as can be seen in Table I, the maximum PSD peak
intensity shows a good correlation with the excess heat percentage and reproducibility (when
applicable), but it is much lower in the spectra of samples which did not produce excess heat. A
similar correlation does not appear to be evident in the specific surface area values, which are
shown in Table II and which are scattered less than 10% around the same mean value.
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Figure 2. Top: 3-D AFM images of samples L46, L5 and #64, which gave excess heat during electrochemical
deuterium loading; Bottom: Maximum Power Spectral Density curves computed from the AFM images

shown on the top

Figure 3. Top: 3-D AFM images of samples L47, L51 and L53, which did not give excess heat during
electrochemical deuterium loading; Bottom: Maximum Power Spectral Density curves computed from the
AFM images shown on the top; in case of sample L47 the curves obtained by the analysis of three different

sample points are also shown.
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Table I. Summary of max PSD intensity in the range 1 to 4 μm-1 and excess heat data. The second column
indicates the excess to input power ratio, the third column indicates the ratio between the number of

samples giving excess heat and the total number of experimented samples of the same lot.

Sample Excess heat % Reproducibility Max PSD intensity (x10-32 m4)
#64 >1000 2/2 9.5
L5 25-60 2/4 0.7
L46 12 1/1 0.06

Table II. Effective surface area of the studied samples, computed from the AFM images by the free GNU
GPL software Gwyddion.

Sample L46 L5 #64 L47 L51 L53

Surface area (m2) 588 653 684 631 640 602

These results suggest that the surface morphology of the Pd cathodes itself plays a role in the
excess heat production mechanism. We are not yet able to identify this role, but it cannot be
simply reduced to the effect of the change in the specific surface. In this respect, the identified
PSD function can be considered as a valid way to estimate the surface morphology.

However, a potential problem with the scale of this method should be noted. The analysis is
limited to a small areas of the sample, which may not be representative of the entire specimen.
To overcome this problem, a more extended and systematic mapping of the sample surface on
different length scales should be done, aimed at eventually discovering scaling behaviors. This
may show a relationship, for examples, between the local in-grain morphology and long scale
crystal grain distribution. Anyway, even the small-scale investigation has proven to be a
worthwhile method, and it has shown the occurrence of a particular PSD spectrum, which we
have tentatively identified as a favorable condition for excess heat production, is just one of
many other conditions, which involve metallurgical and electrochemical properties of the
palladium cathodes 4.

Conclusions
A method of characterizing the surface morphology of Pd cathodes, based on the spatial

power spectrum, has been presented. A preliminary screening of the data showed some
common features in the spectra of samples giving excess heat, which are not observed in
samples not giving heat. The observed features indicate the presence of pseudo-periodic
patterns in the surface morphology, whose period is in the range of some tenths of microns. The
surface morphology requirement for excess heat is only a necessary condition, not sufficient:
other criteria must also be satisfied.
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Abstract
A systematic approach has been followed in the production and characterization
of Pd foils to be used in excess heat production experiments [1][ 2] [3]. Starting
with a metal foil as supplied, palladium samples have been fabricated and
characterized in a step by step process, and then subjected to electrolysis
deuterium loading. The characterized metallurgical properties include the main
grain size, the grain boundary, the material Vickers hardness, and the crystal
grain orientation. Electrochemical properties that are recorded include the D/Pd
loading ratio and the D/Pd low current loading ratio. A suitable correlation
parameter has been defined and correlations have been found between excess
heat production and individual properties; i.e. the mean grain size, grain
boundary, material hardness, crystal grain orientation, deuterium loading and
low-current deuterium loading level.

Introduction
A great deal of experimental evidence indicates that the reproducibility of excess heat

production is strongly controlled by the cathode’s material properties. To achieve deeper
understanding of the phenomenon, a systematic characterization of the metallurgical properties
and loading behaviour of Pd cathodes used in excess heat experiments at different laboratories
(ENEA, SRI, Energetics Technology), has been performed. A central role in the improvement
of the study is the development of a tool for experimental data organization and storage; i.e. a
database including all the information collected for each sample. The data is rigorously
organized and easily retrieved and compared.

Data analysis aimed to look for correlations with excess heat production. A statistical
approach has been followed, as the role played by each material-related issue is not known yet,
and an exhaustive theoretical explanation has not been devised.
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Experimental
Starting with the metal foil from the supplier, palladium samples have been produced and

characterized in a step by step process before being subjected to an electrolysis deuterium
loading experiment.

Cathode Manufacturing
Cold rolling and annealing create an optimized metallurgical structure of the material, which

increases deuterium loading. The raw starting material was palladium foil 1 mm thick able to
reach a loading ratio of about 0.75 - 0.8 hydrogen/palladium atomic ratio.

The initial treatment was done in two steps:

(1) Cold rolling of the raw material produces Pd foils 50 microm thick.
(2) Annealing at temperatures ranging from 800 to 900°C for about 1 hr.

The resulting foils are rectangular, about 20 mm long and 10 mm wide, with a thickness of
about 50 m. These strips are cut into 40 mm long pieces, to make cathodes with appropriate
dimensions. Then the samples are chemically etched using nitric acid and aqua regia. This is
done to clean impurities from the surface which can contaminate it during the cold rolling and
annealing, and also to activate the surface, making it easier for hydrogen to diffuse into the
metal lattice. From a metallurgical point of view such treatment reveals material surface
morphology, allowing the SEM observation of the grain dimension distribution in the sample.
Surface chemical etching is also one of the suitable methods to obtain the required surface
roughness.

Cathode Characterization
Because the origin and preparation of the cathode is crucial to the outcome of the experiment,

each step in the process should be recorded for each sample. We do this with a protocol for the
sample designation. For example, the cathode designated L54(189-227)RAEF indicates the
following: L54 is the rolling run; (189-227) indicates the sample position inside the original
rolled stripe; R stands for “rolling performed”; A for “annealing performed”; E for “etching
performed”; and F is the deuterium loading specification (i.e. in which electrochemical cell the
sample was placed).

Metallurgical properties that have been characterized include the most common grain size
found in the sample, the grain boundary, Vickers hardness, and the crystal grain orientation.
Because the samples in this study are polycrystalline, the chemical behaviour of the surface is
not homogeneous, and strictly dependent on the grain crystallographic orientation.
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Figure 2.1. Grain orientation distribution as
revealed by EBDS on L46 Pd sample

Figure 2.2. Grain orientation distribution as
revealed by EBDS on L47 Pd sample

Excess heat experiments
After the Pd samples are fabricated and characterized from a metallurgical point of view,

they are used as cathodes in electrochemical cells, which are placed inside a calorimeter. The
metal lattice is loaded with deuterium to see if excess heat production occurs.

All the samples used in this study gave a D/Pd loading ratio with values ranging from 0.9 up
to about 1.

The calorimetric study allowed us to understand that not only loading but also intrinsic
properties of the material controlled the reproducibility of excess power. This evidence
prompted us to establish a database of material properties.

Database
The custom- developed database includes all relevant characterization parameters. A typical

record is shown in Fig. 3.1. It includes the sample name and its manufacturing specifications,
and also the results of materials measurements, together with SEM and AFM images.

Selected phase
is Palladium

L46

Selected phase
is Palladium

L47
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Figure 3.1. A typical database record

Analysis
After systematically characterizing the cathodes, and collecting and organizing the data, a

statistical analysis was performed to look for correlations with excess heat. To quantify the
correlation a “degree of correlation” (g) between a selected property (f) and the excess heat
occurrence (h) has been defined as:

22 




hf

hf
g

Where g=1 then there is full correlation between the selected property and the excess heat
production; where g=0 there is no correlation.

Results and Discussion
Figures 4.1 through 4.6 show the histograms of each of the material properties investigated in

this work, together with the indication of excess heat production (shown in the graphs with the
thinner bars).

It can be seen from these figures that some properties are well correlated with the excess heat
production. This is particularly evident in Fig. 4.2, showing that most of the samples giving
excess heat have well defined grain boundaries, while samples in which grain boundaries are
not clearly identifiable by microscope inspection, in most cases did not produce excess heat.
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Figure 4.1 shows the mean grain equivalent radius (units are microns), as it has been
measured from the SEM images, by counting the number of grains present in a fixed area.

Figure 4.3 shows that excess heat occurred with more statistical probability with samples
which have a Vickers hardness of 120 MPa. The Vickers hardness is measured on the

Figure 4.2. Grain boundary correlation with
excess heat (1=correlation evident, 0=not
evident)

Figure 4.4. Grain crystal orientation
correlation with excess heat

Figure 4.3. Vickers hardness (units areMPa) of
batch correlation with excess heat

Figure 4.6. Low current D/Pd loading
correlation with excess heat (units are mA-1)

Figure 4.5. D/Pd loading ratio correlation with
excess heat

Figure 4.1. Mean grain size correlation with
excess heat occurrence
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palladium lot as received. Different hardness values indicate different elastic properties and
different impurity content in the original material.

In Fig.4.4 the results of crystal grain orientation are reported. The ordinate axis indicates the
percentage of the sample volume which is oriented along a particular crystallographic direction.
Three sets of data have been reported, one for each of the main lattice planes: <100>, <101>,
<111>. Although the results are not statistically significant because the ensemble of samples on
which crystallographic data have been available is limited, the graph shows that only samples
having more than 50% <100> orientation gave excess heat, suggesting that <100> orientation is
a necessary condition for excess heat to occur.

The last two figures (Fig. 4.5 and 4.6) show data on deuterium loading. In Fig. 4.5 the
ordinate axis indicates the values of the D/Pd atomic ratio determined with four point probe
resistivity measurements and the Baranowskii – McKubre curve. This is measured during
electrolysis. The results confirms what has already been described in literature, that a D/Pd
ratio higher than 0.85 is a necessary condition to obtain excess heat. It should be noted,
however, that all the samples considered have a D/Pd ratio higher than 0.85; the correlation
parameter g value would be much higher if samples below the loading threshold had been
considered.

Fig. 4.6 gives insight into a more unexplored result. The histogram shows the ratio between
D/Pd atomic ratio (also referred as the “maximum loading”) and the electric current that was
flowing through the cell when that loading was obtained. McKubre identified two types of
excess power production: Type A, excess begins after several days of electrolysis and depends
on the current density; and Type B, excess begins soon and does not always depend the current
density. [4] The figure shows that when excess heat is produced, a high level of deuterium
loading was generally obtained at low electric current (see samples L14, L17, L23, L46);
exceptions are samples L25a and L30Flux, which both gave excess heat of type B, while all
other samples gave excess heat of type A.

Table 4.1. Correlation factor g value for measured properties of the Pd samples

Hardness
Mean
Grain
size

Grain
boundary

Grain Crystal
Orientation D2

Loading

Low
Current

D2

Loading
<100> <101> <111>

Correlation
Factor (g)

0.65 0.64 0.63 0.62 0.23 0.46 0.60 0.81

Conclusions
Starting with metal from commercial suppliers, Pd cathodes have been produced and

characterized systematically, by performing measures on their metallurgical and
electrochemical properties.

The experimental data have been filed and stored in a database.
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Suitable correlation parameters have been defined and correlations have been found between
heat excess production and individual properties; i.e. the mean grain size, grain boundary,
material hardness, crystal grain orientation, deuterium loading and low current deuterium
loading level.

Multiple-regression data analysis could also be advantageously applied to our data, because
the number of samples in the database is increasing.
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Abstract
In this paper we first point out evidence for condensed matter cluster formation
based on thin-film electrolysis. Next, measurements of superconductivity in
condensed matter deuterium “clusters” in dislocation sites loaded-deloaded
palladium thin films are briefly reviewed, followed by a discussion of
techniques under study to increase the number of such sites per unit volume of
the electrodes. Estimates for resulting “cluster reaction” rates – flow enhanced
Pycnonuclear fusion are given. If successful, this approach offers a “Roadmap”
for future power unit based on thin films and clusters.

Introduction
There is mounting evidence for localized reaction sites in many cold fusion and low energy

nuclear reaction (LENR) experiments. Hot spots and damage spots on electrodes have been
widely reported (e.g, by Srinivasan, Mizuno, Dash, Boss, …). Also, there have been detection
patterns noted in our various types of experiments (Bead x-ray film, transmutation product
pattern, MeV charged particles tracking pattern in CR-39 detectors, and observation of soft
X-ray beamlets in pulsed plasma bombardment experiments). These observations indicate that
localized reaction sites frequently occur and can dominate the reaction mechanism. More
insight into the possible character of these sites comes from our earlier studies of the formation
of superconducting “clusters” of hydrogen isotopes in dislocation loops formed in thin film
palladium electrodes. That work is reviewed next, followed by a discussion of implications for
creating highly reactive electrodes based on a high density of these condensed matter “clusters”
in the host electrode material.

Condensed Matter Cluster Characteristics and Electrode Fabrication
The squid magnetic measurements described in Ref. 1 show “clusters” have characteristics of

a type- II superconductor (See Figure 1). Cluster regions can have hydrogen densities
approaching 1024/cc (See Figure 2). Dislocation loop cluster type electrodes are fabricated by
cyclic loading-deloading, hence being named “Dislocation Loops by Repetitive Loading-
Deloading (DLRLD)”electrodes. These DLRLD electrodes are based on studies where high
loadings in dislocation loops in treated Pd have exhibited properties associated with a
superconducting phase termed a “cluster.” However, the low fractional volume of the clusters
(which is where the fusion producing reaction would occur) limits total reactions to low levels.
Thus, a second type of cluster forming electrode that employs a manufactured nano-porous
structure is under study.
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Figure 1. The magnetic moment of H2- cycled PdHx(fg) samples in the temperature range of 2  T < 50 K is
significantly lower than M(T) for the original Pd(bgr) single crystals.

Figure 2. Squid magnetic measurements show clusters have characteristics of a type- II superconductor.
Cluster regions can have hydrogen densities approaching 1024 1024/cc.

Fabrication

Cold worked Pd foil is used for Pd/PdO production. Prior to oxidation, the Pd substrate is
annealed in a vacuum. It was then briefly treated in an oxygen-butane torch to produce a stable
oxide layer, about 40-nm thick. Samples were electrochemically cycled to create a hydrogen
filled dislocation structure in the Pd/PdO. The samples serve as the cathode, and a Pt anode is
employed along with a high purity electrolyte. Electrochemical “cycling” involves periodically
switching the cathode-anodic polarizations (loading – deloading) of the sample. After achieving
a cathode loading up to x = H/Pd = 0.7, the voltage polarity is switched to the anodic regime to
extract hydrogen from the volume of the lattice. To remove all weakly bound residual hydrogen
atoms, the loading–deloading cycles are repeated 5-10 times. The samples are then annealed in
a vacuum at 300°C for several hours.
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Loading Measurements

A high-vacuum thermal desorption technique is used to estimate residual hydrogen
concentration in the PdHx and Pd/PdO:Hx samples (Fig. 3). The samples were heated in a high
vacuum (10-8 Torr) chamber with a quadruple mass-spectrometer. The hydrogen desorption
peak area and the temperature of its maximum were found by analyzing the desorption species
and comparing their yields to background data from the Pd(bgr) or Pd/PdO)bgr).

Figure 3. Thermal desorption analysis (TDA) performed with annealed Pd(bgr) samples in the temperature
range of 20-900°C

Analysis of Cluster Loading

To obtain an average loading ratio x = H/Pd, special calibration measurements are done with
a known mass (0.3 mg) of TiH2 powder (decomposition temperature ~ 400°C.) A Comparison
of the hydrogen pressure from this powder, with that of the PdHx samples gives the residual
hydrogen content in the cycled Pd. The typical effective loading ratio is found to be
x ~ (4.5 0.5) × 10-4, much lower than for any known stable phase of Pd hydride. Since this
sample underwent annealing at a temperature of 570 K (decomposing the residual -phase in
the lattice), all remaining hydrogen detected is attributed to loading in dislocations, not in the
regular lattice.

Cluster Parameters

Extrapolation of results of SANS measurements gives a radius RH and binding energy of the
residual hydrogen distribution with respect to dislocation cores. The Garlic-Gibson kinetics
model is used for the kinetics of the second-order thermal activation processes observed in the
thermal desorption analysis (TDA) measurements. Then, the activation energy of desorption
(effective binding energy of hydrogen atoms within the lattice) is found to be ~ 1.6  0.2 eV,
well above the H-trapping activation energy of ~ 0.7 eV normally attributed to bulk hydrogen.
This indicates that the hydrogen is solely bound inside the deepest core sites (at a radius RH =
2.75 A, close to the Burgers vector or minimal radius of H capture in Pd). This suggests that all
residual hydrogen is localized inside the dislocation loops (in the direction of Pd [121])
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determined by Burgers vector b [101] = 2.75 A. Then, the dislocation density Nd, the effective
loading ratio inside the loops is determined by the simple formula: xeff = 2<x>/Nd<x>/b2.,
giving Nd ~ (1.0-2.0) × 1011 cm-2 and <x> ~ (4-6) × 10-4 Thus xeff would be in the range of
1.0<xeff <3.0, suggesting superstoichiometric hydride formation in the deep dislocation cores.

Summary – clusters lead to localized SC

These results show that an anomalous diamagnetic response in these electrodes occurs below
30 K which is attributed to superconductivity in Pd hydride phase (“clusters”) inside the deep
dislocation cores. This interpretation is also consistent with the temperature and field
dependencies of corresponding magnetization curves. Both their shape and field behavior have
the characteristics of a non-linear, irreversible magnetization function of a type- II
superconductor.

New Nano-Structure Film (NSF) Electrodes/Targets
Recently, a new type of electrode, the NSF electrode, was developed to create cluster

formation in nano-porous structures manufactured on a Pd or Ni thin film electrode. The
concept is to mimic the dislocation loops, but achieve a larger volumetric concentration or
“packing fraction” than in the DLRLD electrode. This method used follows one originally
developed by R.N. Rhonda of the International Nickel Plating Company. Palladium is
deposited on a nickel substrate using an electroless deposition technique. An ammonium
hydroxide solution dissolves palladium chloride tetrammine amine. Disodium EDTA keeps the
palladium metal in the solution and the nickel substrate is etched and placed in the plating
solution. Aqueous hydrazine is then added, destabilizing the palladium. Hydrazine is
introduced using an infusion pump and the solution is placed inside an ultrasonic mixer. The
destabilized palladium then plates the nickel substrate.

Auger spectroscopy performed on the electrodes confirms that the plating technique
successfully deposited palladium completely and thinly. Roughly 0.05 g of palladium is
deposited on each 25 cm2 electrode at a thickness of roughly 50 nm. Auger scans are shown in
Figure 4. The structures provided are thought to provide the conditions needed for cluster
formation. Some preliminary electrolytic studies have been encouraging, but much more needs
to be studied to understand the true promise of this new electrode design.

Figure 4. Auger Scan of Ni Microfelt (left) and Ni Foam (right) electrodes -White color indicates Pd-
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Reaction Rate Estimates
An estimate of Cluster fusion rates in such dislocation loops at high D density follow from

the well known Pycnonuclear reaction theory used for calculation of high density state fusion in
astrophysics [6]. In the present case, however, the normal theory must be modified to include
the effect of flow of hydrogen (deuterium) ions into the cluster site. This flow is unique to the
present case of electrolytic ally driven reactions and it drastically changes the reaction rate.
Initial results applying this modified Pycnonuclear theory confirms the rate strongly depends on
cluster loading (i.e. on the condensation state and the dislocation geometry) and on the
deuterium flux across the loop boundary flux. Results confirm that use of deuteron fluxes
consistent with the thin film foil studies using CR-39 tracking foils predict rate of the same
order of magnitude as indicated the experimental data. Further details about this theory will be
presented in a forthcoming paper.

Implications – A Roadmap to Power Cells
If high volumetric densities of cluster sites can be created via the methods outlined earlier, a

high reaction rate per cc should result given a competitive power cell. We term the electrode
designed to achieve a “massive cluster electrode” (MCE) for controlled cluster reactions. Some
insight to the way we hope to achieve this is illustrated in Figures 5 and 6.

Figure 5. Illustration of construction of MCE.
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Figure 6. Construction steps for making Micro-fiber Felt (NMF) for the MCE.

The approach starts with creation of a micro-fiber felt sandwich structure as shown in Fig. 5.
The MNF is a unique material that is manufactured in a multistep process outlined in Fig. 6.
Palladium is then sputtered onto the MNF prior to encapsulating it into the sandwich electrode
configuration. Many local defects occur at interfaces in this configuration, giving a high
volumetric density of potential cluster sites. This work is currently in progress, and preliminary
results to data are encouraging.

In addition to applications to LENR power systems as discussed here, a version of the
Massive Cluster Electrode has a very important application in hot fusion. As suggested by the
author in Ref. 5, such a structure could be used in the core of an inertial confinement fusion
(ICF) target. In that application the objective is to use a laser or ion beam to compress a target,
thereby compressing the clusters since the cluster deuterium density is in order of magnitude
higher than cryogenic deuterium. The compressed cluster density would also exceed that
possible in present cryogenic ICF targets. Since the reaction goes as the square of the density, a
very large reaction rate would occur in the cluster region. In addition to power production, such
conditions are of strong interest to basic understanding of fusion phenomena and astrophysics
[6]. For power production the techniques would need to be extended to develop deuterium-
tritium (D-T) clusters to take advantage of the high D-T fusion cross sections. Also, to reduce
radiation losses development of a low-Z host material such as lithium or beryllium would be
desirable.

Conclusion
This paper makes a strong case that condensed matter deuterium cluster formed in dislocation

loops are one way to achieve nuclear reactive sites in LENR electrodes. The problem to date
has been that the volumetric density of such cites, which is highly reactive, have a low density
of sites per unit volume. Possible methods to achieve a high volumetric density of sites (i.e.
achieve a massive cluster electrode (MCE) that are under study are briefly outlined. This is
thought to offer an orderly “roadmap’ for moving on to competitive power cells.
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Introduction to the Theory Papers

Persistent resistance to accepting the Fleischmann–Pons Effect (FPE) as an attribute of a
nuclear process is due to the need to accept two “miracles”: suppression of the Coulomb barrier
and lack of high-energy emissions. Both observations contradict textbook nuclear physics and
experience with hot fusion. The first problem is how deuterons (or other nuclei) get together to
undergo nuclear reactions despite the electrostatic repulsion between them. If one assumes a
two-particle scattering model and collision energies commensurate with the temperatures in the
experiments, calculations of the tunneling rate through the barrier yield values too low by some
tens of orders of magnitude to account for the observed output powers. The second problem is
the lack of observed high-energy gammas, alphas, neutrons, protons, or other prompt nuclear
signatures. (There are experiments in which low-level energetic emissions from metal
deuterides or hydrides have been reported, often without measured excess heat. These lend
credence to the proposition that nuclear effects are taking place, but the levels are not
commensurate with the power observed in excess-heat experiments.) In the hot-fusion regime,
the dominant channels for deuterium fusion are d + d → p + t + 4 MeV and d + d → n + 3He +
3.3 MeV; the expected energetic reaction products are typically not seen in cold-fusion
experiments. Correlation of 4He production with heat production suggests d + d → α + 24 MeV 
(or d + d + X → α + X + 24 MeV, with X to be determined), but again energetic outputs such 
as 24 MeV gammas are conspicuously absent. We thus need an explanation for how energy
born in multi-MeV nuclear events gets transferred to the lattice as heat.

Over half of the papers in this section—fourteen of the twenty-three—address in some way
the suppression of the Coulomb barrier. We will say something about each of them below. Six
of the fourteen also address the lack of high-energy emissions. Three papers can be classed
under the heading of “transmutation,” which is used here to refer to transformations of isotopes
other than those of hydrogen and helium. Nine other papers attempt to lay a foundation for
anyone trying to develop models and theories of the FPE. These are discussed first.

Table 1 has been constructed to provide a characterization of the various papers in this
section. The numbers of the papers in the table, and at the end of this introduction, are referred
to in the remainder of this introduction. The table answers the following questions:

1. What is the form of the reaction considered? (“Which LENR?”)
2. Does the paper deal with the Coulomb barrier? (“Coulomb barrier”)
3. Does the paper deal with the presence or absence of energetic particles?

(“Hi-energy particles”)
4. What is the conceptual foundation of the theory? (“Concept”)
5. Has the concept been reduced to equations? (“Equations?”)
6. Have numerical results been provided? (“Numerical Results?”)
7. Have the results been applied? (“Use of Results?”)
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Foundations: Experimental Evidence, Models of the Physical System,
Theoretical Concepts

Explanations or even simple models of the PdD system that account for the FPE heat require
simultaneously addressing the problems at nuclear scales, femtometers (fermis), and both
atomic and chemical scales, nanometers, in a solid or a liquid where transport of hydrogen
isotopes is occurring. We have few integrated theories for any physical science problem of this
wide scale and complexity. Instead we develop small model systems to help us explain certain
observations and use them to guide our experimental exploration. This is not a problem new to
science. Herbert Frohlich in his 1961 review of The Theory of Superconductivity provides us
some guidance on what has succeeded in these situations.

By 1933, when it was clear that the basic physics required for the development
of a theory of superconductivity was well understood, many physicists had tried
in vain to propose such a theory. A general feeling of frustration arose such that
the first thing one did when acquainted with another attempt was to try to find
where it was wrong. This feeling found its expression in Pauli’s remark,
“Theories of superconductivity are wrong”, and by Felix Bloch’s theorem,
“Theories of superconductivity can be disproved”. It was astonishing to see how
my first paper in 1950—soon followed by Bardeen’s first paper—led to a
complete reversal of opinion. Schafroth (1951) followed Pauli’s suggestion to
work further on this theory and he was the first to show that perturbation theory
could not be applied. Yet neither he, nor most others, doubted the correctness of
the basic assumption that electron-phonon interaction should be principally
responsible for superconductivity. This, so far as I have seen, was principally
due to the fact that no ‘new’ interaction between electrons had to be invented but
that the theory was completely based on the empirically successful free electron
model. …

Yet it appears that all this did not affect some of those physicists who had
previously formed an opinion in a different direction. A striking example can be
found in the article by W. L. Ginsburg published in 1953…

In contrast to this dangerous dogmatic approach, the development of the theory
of superconductivity is an excellent example of the intuitive approach. My idea
was foremost that one should consider the small energy involved in the
superconductive transition as the first problem to be answered. Electron-phonon
interaction provided this possibility from a purely dimensional point of view.
When the early attempts did not succeed in solving the problem, then it was
required, I thought, to find a new approach to the many-body problem involved.
However, intuition won again: Bardeen, Cooper and Schrieffer (1957) proposed
their state vector which virtually solved the problem of the gap.
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What is to be explained?
Peter Hagelstein, Michael Melich, and Rodney Johnson (13) give a survey of experimental

results that have an important feature in common. They show effects, likely nuclear, not
explained by existing treatments of nuclear physics, and occurring in condensed-matter systems
at relatively low temperatures. These are presented as sources of questions that need to be
addressed by possible new theoretical statements or models.

How compelling is the experimental evidence?
The paper by Rodney Johnson and Michael Melich (“Weight of Evidence for the

Fleischmann-Pons Effect”) addresses this question and can be found in the section on
“Challenges and Summary” The introductory comments on this paper are to be found in that
section.

Where shall we start?
The paper by Peter Hagelstein et al. (14) presents a general framework for formulating

problems in CMNS in terms of generally accepted basic principles. The framework is broad
enough to encompass problems of nuclear physics and condensed-matter physics on an equal
footing, together with interactions between them. The starting point is a representation of a
system as a set of electrons and nucleons, interacting via electromagnetism and the strong
nuclear force, supplemented if necessary by weak-interaction terms and neutrinos. A set of
reductions and approximations is described that allows a problem to be made computationally
tractable while retaining necessary detail: empirical potentials may be used for interactions
between nucleons; most lattice nuclei may be treated as single entities by writing in terms of
center-of-mass coordinates and integrating out the relative coordinates of constituent nucleons;
the Born-Oppenheimer approximation may be used; and in problems involving phonons, the
center-of-mass coordinates may be re-expressed in terms of phonon-mode amplitudes. The
coupling between phonons and internal nuclear coordinates is discussed as an example. This
approach reflects Frohlich’s notion that progress depends on our dependence on “intuition” or
in the jargon, induction as opposed to deduction from axiomatic approaches. John Bardeen,
when faced with the 1987 high-temperature superconductivity results, turned immediately to
tabulating the experimental data and trying to understand what it was telling us. Bardeen’s
method of “wallowing in the data” puts the foundation under intuition and lets the experiments
guide in the selection of models, as advocated in this paper.

Are there other kinds of mathematical relationships that could be useful in CMNS?
Hideo Kozima (16) hints at intriguing connections between cold-fusion processes and two

topics related to complexity theory: (1) cellular automata and (2) recursion relations of the form
xn+1 = λ f (xn). The connection with cellular automata is that the occupation numbers at time t + 1
for D (or H) at a lattice site depend on the values at time t at the site and its neighbors. The
working out of the exact dependence has been left for future work. For the recurrence relations,
the author describes the population model that led to the logistic equation, xn+1 = bxn(1 − xn).
Radically different types of behavior, chaotic and non-chaotic, can be obtained by varying b
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Such results are applicable to a wide variety of nonlinear dynamical systems. Precise details of
the connection with cold-fusion phenomena are left for future work.

Can the methods of Control Theory modeling assist in the design of CMNS experiments?
Mitchell Swartz (20) considers phenomenological relations involving various performance

parameters of CMNS systems, such as excess heat production and production of helium or
tritium. He argues that these relations (referred to as Optimal Operating-Point [OOP]
Manifolds) are best presented as functions of electrical input power and that these relations
describe many (or most) CMNS systems, provided one distinguishes three regions: surface,
subsurface, and deep bulk (the last also including Y. Arata’s zirconium / Pd black systems).
The author relates OOP manifolds to an equation (eq. 1 in the paper) then relates deuteron
fluxes to drift rates (due to applied field) and thermal diffusion rates. On the basis of the
equation, he recommends use of low currents, high voltages, and pure D2O without additives
such as LiD.

Robert Bass & Mitchell Swartz (3) confront Bass’s work on system identification
(“Empirical System Identification”) described in his ICCF-1 paper, with Swartz’s work on
OOP Manifolds, mentioned just above. Models of various sizes were estimated, and the system
output values calculated from them were compared with measured values. On the basis of the
results, the authors hold out the possibility of designing a feedback controller for lattice-
assisted nuclear reaction (LANR) systems that would yield a substantial improvement in output
power.

Mitchell Swartz & Lawrence Forsley (21) examine results reported by Irving Dardik and
others at Energetics Technologies, in which LANR systems were driven by a complex
waveform consisting of a sinusoid modulated by another sinusoid, which was modulated in its
turn by yet another sinusoid. The authors propose as an explanation for the reported substantial
energy gains that the waveform had the effect of driving the system, for at least part of its duty
cycle, through its optimal operating point (OOP, mentioned above).

Does CMNS compel us to take a quantum-theoretic view of CMNS?
The paper by Scott Chubb (5) is a largely philosophical work that takes as its thesis that the

real barrier to progress in Condensed-Matter Nuclear Science (CMNS) is not the physical
Coulomb barrier but the conceptual barrier presented by quantum mechanics. We are
introduced to the epistemological perplexities of quantum theory and the challenges to our
notions of causality presented by Wheeler and Feynman’s absorber theory. Towards its end, the
paper makes contact with the “Ion Band Theory,” which has been developed in many previous
publications by the author and Talbot Chubb. Deuterium ions in the lattice are treated as
occupying nonlocal states similar to the states occupied by conduction electrons in
conventional solid-state theory. Resonant conditions are important, and boundary effects come
into play.
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Explanation of fusion (with or without high-energy emissions)
Several of the papers involve the notion of screening—accumulation of negative charge

(electrons) at locations between two nuclei so that the resulting attractive forces partially offset
the repulsion between the positive charges of the nuclei. A few circumvent the Coulomb barrier
by introducing neutrons into the interaction, neutrons not being subject to electrostatic
repulsive forces. Both these ideas are highly intuitive—they are easy to picture in the mind’s
eye. Many of the papers, however, invoke notions more remote from everyday experience. We
find mention of cooperative effects, nonlocality, quasiparticles, resonance, and condensates.
The discussion becomes ineluctably quantum-theoretic.

The Ion Band Theory (mentioned above in connection with Scott Chubb’s paper) is also the
subject of the paper by Talbot Chubb (6), who discusses a two- (rather than three-)
dimensional version of the theory suitable for treating interfaces, such as that between a ZrO2

crystal face and a Pd nanocrystal.

The paper by Ben Breed (4) studies “heavy electrons,” electron pseudo-particle states with
high effective mass, a well established concept in solid-state physics. Breed points out that
while the states are nonlocal in the sense of extending over many lattice cells, they can
nevertheless concentrate charge near the lattice sites, or at points midway between, and thus
provide a mechanism for screening to suppress the Coulomb barrier. To explain the lack of
high-energy emissions, he invokes resonant modes that can bring four deuterons close together.
Though such multi-particle interactions are virtually impossible in particle-beam experiments,
we are told that they are not uncommon in a solid-state environment. Not all four deuterons are
required to participate in fusion. However, the additional particles expand the possibilities of
sharing energy and momentum while respecting conservation laws.

Four-deuteron interactions are also considered in the paper by Akito Takahashi (22) though
details differ greatly. Takahashi posits the formation of a “tetrahedral symmetric condensate,”
involving a cluster of four deuterons with the symmetry of a tetrahedron, an example of what
he calls “Platonic symmetry.” (The tetrahedron and the octahedron, also mentioned, are regular
polyhedra, instances of the classical Platonic solids.) Applying a one-dimensional Langevin
equation to the internuclear distance, the author concludes that, once formed, such a cluster,
while preserving its symmetry, will with near certainty undergo catastrophic collapse to very
small dimensions, fusing to an excited 8Be* state. Takahashi expects this to yield two 24 MeV
alpha particles, though details await further work. The energy is predicted to be expressed as
kinetic energy of the alphas rather than as gamma radiation.

The paper by Jacques Dufour et al. (8) concerns a hypothesized new force, derived from a
Yukawa-like potential with a greater range than the usual nuclear scale: picometers rather than
femtometers. The authors explore some consequences of the existence of the potential,
including possible bound states between Pd and D or D and D at a picometer scale, and
possible promotion of fusion reactions. They propose an experimental program to test the
existence of and to study the potential.

Cheng-ming Fou (9) considers a pair of deuterons contained in a void of atomic dimensions
in an otherwise homogeneous solid. He proposes mechanisms, namely neutron exchange and



481

electrostatic fields, that could generate attractive forces between the deuterons, partially
offsetting the Coulomb barrier. The author makes the point that knowing what the fields are in
the metal environment is an important consideration, and through a simple model calculation,
he attempts to find a tractable way of estimating them.

Fulvio Frisone (10) studies plasma oscillations of palladium d-shell electrons, Pd ions, and
deuterons in D-loaded Pd, in an extension of work by Giuliano Preparata. He finds negative
charge condensation near D+ ions, providing a screening potential. However, calculated fusion
rates are said to be insufficient to explain substantial heat production in Fleischmann–Pons
experiments. The author contemplates further work, exploring the contributions of
deformations, micro-cracks, and impurities.

Yeong E. Kim (15) proposes that mobile deuterons in a micro- or nano-scale grain of Pd can
form a Bose-Einstein condensate. He cites work of Dirac and Bogolyubov to assert that for
large occupation number of the ground state, the bosons act independently and largely ignore
the Coulomb barrier. He presents selection rules, which suggest that, in contrast to free space,
d + d → α should dominate, not d + d → p + t or d + d → n + 3He. The resulting 24 MeV is
said to be taken up by the condensate and shared by the remaining deuterons.

K. P. Sinha and A. Meulenberg (19) propose a mechanism for screening involving: presence
of d-d pairs in linear defects in the Pd lattice; interactions of optical-mode phonons with ions
and electrons; consequent formation of local electron pairs; then formation of D− and D+ ions
and hence resonant D+-D− pairs. The local electron pairs have been discussed elsewhere by one
of the authors in connection with high-temperature superconductors.

The paper by Dimiter Alexandrov (2) is one of three in this section that deal in some way
with neutrons as participants in nuclear reactions in solids. The focus of this paper is “heavy
electrons.” The author considers disordered nitride semiconductors such as InxGa1−xN and
performs band-structure calculations that lead to values (some quite large) for the effective
electron mass. He considers conditions under which the enhanced mass can permit an inverse
beta-decay reaction: e + p → n + ν, as also proposed under other conditions by A. Widom and 
L. Larson (ref. [3] of the paper). The resulting neutrons can induce various unspecified nuclear
reactions. Application of this work to metallic hydrides, such as PdD, is not yet clear and is left
to future work.

Robert Godes (11) proposes a mechanism to explain FPE devices built by his company, and
perhaps other systems. Direct D+D fusion is avoided by an indirect path involving cold
neutrons. An assumed Hamiltonian leads to neutron production through inverse beta-decay.
Hydrogen isotopes build up to 4H by neutron capture, followed by 4H → 4He + e +  .

Xing Z. Li et al. (18) present a three-parameter empirical formula for cross sections of
several processes involving D, T, or 3He. It shows better fits to data than a much used five-
parameter formula. They argue that the form of the formula supports a “selective resonant
tunneling” model for the processes and, on the basis of channel-width matching, that the
absorption process at low energy must be narrow, long-lived, and therefore a weak-interaction
process. They conclude that selective resonant tunneling explains the occurrence of excess heat
without high-energy neutron or gamma emission. As a candidate reaction they mention “K-
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capture of an electron by a deuteron, followed by decay of a triton.” This is written as p + d +
e– → T + ν followed by T → 3He + e– +  , though “K-capture of an electron by a deuteron”
would seem to hint at the transitory existence of a dineutron, 2n, during the first reaction.

This brings us to the paper by Peter Hagelstein and Irfan Chaudhary (12). Though
screening is addressed, the main thrust of the paper is how a large quantum of energy, on the
order of 24 MeV, can get distributed to the lattice as a very large number of quanta of
vibrational modes, each on the order of a small fraction of an eV. The authors have studied
models of a two-level system with a large transition energy (such as D2 and 4He separated by
24 MeV) coupled to a low-energy harmonic oscillator, representing phonon modes. (These are
reminiscent of multi-spin spin-boson models that occur in other contexts.) Because the
coupling is weak due to the Gamow factor associated with the Coulomb barrier, they are led to
consider (1) a loss term to suppress destructive interferences and (2) a second two-level system
strongly coupled to the oscillator. Candidates for the second two-level system are discussed.
This work is one part of a very ambitious program to model the FPE in detail from established
basic principles. It takes place within a general framework described in the paper by Hagelstein
et al. (14) already discussed above.

Transmutation
In previous work, V. Adamenko and V. I. Vysotskii (1) reported observations that suggested

transmutations such as 27Al + 12C → 39K in high-current electron-beam experiments. They
hypothesized that such reactions were promoted by magnetic monopoles. In this paper, they
make inferences about the properties of the monopoles and discuss possible mechanisms for
their creation.

The paper by Norman D. Cook (7) considers a lattice model of nuclear structure, an
alternative to the usual shell, liquid-drop, cluster, and other models. The lattice model has
previously been applied to explaining the asymmetric fission of uranium. It is applied here to
observations of palladium cathodes by T. Mizuno suggesting transmutations of the form Pd + D
→ (fission products) for various isotopes of Pd. 

The “water tree” in the title of the paper by Hideo Kozima and Hiroshi Date (17) is a
micron-scale defect, filled with electrolyte, which forms in polyethylene subjected to intense
electric fields and has been implicated in failures of polyethylene-insulated power lines. The
authors propose an explanation for observations by T. Kumazawa et al. that suggest various
transmutations associated with the formation of water trees. The explanation is based on the
authors’ “neutron-drop model,” developed in earlier work, which hypothesized the existence of
a “dense neutron liquid at boundary / surface regions of . . . crystals” that contains “neutron
drops,” denoted A

ZΔ, having Z protons, Z electrons, and (A − Z) neutrons. The transmutations in
question could be attributed to absorption by a nucleus of a neutron, with or without subsequent
beta-decay, or to absorption of a 4

2Δ or an 84Δ. 

Finally, it should be noted that not all theoretical concepts for LENR were represented at
ICCF-14. Hence this section, whilc relatively comprehensive, is necessarily incomplete.
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The Possible Mechanism of Creation of Light Magnetic
Monopoles in Strong Magnetic Field of a Laboratory

System
V. Adamenko1 and V. I. Vysotskii1,2

1 Electrodynamics Laboratory "Proton-21", Kiev, Ukraine
2 Kiev Shevchenko National University, Faculty of Radiophysics, Kiev, Ukraine

Abstract
In this work the reasons and mechanism of the creation of unknown magneto-
charged particles, which were observed in experiments on supercompression of
condensed target in Kiev Electrodynamics Laboratory “Proton-21”, are
discussed. It is shown that these particles are most probably the hypothetical
light magnetic monopoles that were introduced by George Lochak as magneto-
excited neutrinos. The parameters of these particles (including mass of
monopole and both size and binding energy of monopole-antimonopole pair)
and the method of their creation are discussed and calculated.

Introduction
In our previous work [1,2] we have presented the results of observation and investigation of

interaction of unknown magneto-charged particles (hypothetical magnetic monopoles) with
surface of MDS (Al-SiO2-Si) structure. We have observed the traces of ordered thermo-
mechanical impact on the surfaces (Fig. 1). The length of trace was L  2 mm. These results
were observed during experiments in Kiev Electrodynamics Laboratory “Proton-21” on
achieving the superdense state of matter by using the high-current electron driver [3]. In the
experimental setup an impulse electron flux with a total energy about 100...200 J and duration
50 ns was used as a coherent driver in every cycle of supercompression. The energy of each
electron in different experiments is about 300...400 kV, the total current - 50...70 kA .

It was shown that the source of a great specific energy release, dQtot/dl  -106 GeV/cm, spent
on the formation of these traces, may be the processes of nuclear synthesis reactions
Al27+C12 = K39, Al27+C13 = K40, which are running with the participation of MDS-structure
surface nuclei and are stimulated by the action of magnetic monopoles [1,2].
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Figure 1. The general view and details of MDS-structure with the tracks

In the present work the parameters of these monopoles and the mechanisms of their creation
in Earth laboratory are discussed and calculated.

1. Parameters of magneto-charged particle
In our previous work [1,2] it was shown that the process of formation of periodic tracks is

connected with a magnetic interaction of magneto-charged particle with both magnetic field of
anode current and multilayer MDS structure, which is the combination of diamagnetics (Si, SiO
and melted ionized Al) and paramagnetic (solid Al) layers. In view of the form of a macrotrack
(involving the great number of strictly periodic oscillations [1,2]), we may conclude that the
controlling magnetic field is approximately the same along the entire trajectory. This
corresponds to the fact that formation duration of mentioned track part is significantly less than
the total duration 50 ns of the current pulse. If this duration was comparable with , then the
period of oscillations at the beginning and at the end of the track would be essentially different.

This result allows us to assume that the duration of the formation of this part of the track with
the length L  2 mm is t  5 ns, and the mean longitudinal velocity of motion of the
hypothetical magneto-charged particle <vg> is greater than L/t  4.107 cm/s.

The maximal longitudinal velocity (in view of periodical stopping and periodical stimulation
of fusion reactions along the trace [1,2]) is vg 108 cm/s.

During detailed SIMS-researches it was shown that the area of unknown particle "point of
reflection" (Fig. 2) is the foreign small-size (about 10 microns) object made of Fe56, Fe57 and
Co59 isotopes and situated on the MDS structure.
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Figure 2. General view and the details of unknown particle reflection area on MDS surface.

This object is made of iron-cobalt alloy and it is probably multi-domain magnetic material

with the typical internal magnetic field 0 6...8H  kOe . The typical size of domain wall is

about r  2 microns. The same size has the area of magnetic field 0( ) exp( / ),outH r H r r  

outside the magnetic material. If the magnetic charge of the particle equals (137...68)g e

than the magnitude of magnetic potential barrier in the area of «point of reflection» equals (see
Fig. 3)

0

0

( ) 50...30M outV gH r dr gH r keV


    (1)

From these results the upper estimation of unknown magneto-charged particle mass can be
made:

23

2
g

2
10

v
M

g

V
M gram  (2)

The upper limit of magnetic monopole mass is less than Mg=10-23 gram, that is by 1016 times
less than previous well known cosmological estimations (10-7 gram) based on the grand unified
theory!

Figure 3. The scheme of reflection of magnetic charge from magnetic domain
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So with a high probability the unknown particle is a light magnetic monopole that was
introduced by George Lochak [4], and that is the magneto-excited neutrino.

There are two possible ways for generation (creation) of such particles during the
experiments in “Proton-21” Lab:

1. These monopoles were created during nuclear processes of protonization and neutronization
in collapse zone with the presence of very strong squeezed nonuniform magnetic field in
the experimental setup of "Proton21" Lab. Fundamental nuclear transformation in this setup
during the formation (shock implosion) and explosion of this zone is described in [3, 5-7].
A specific mechanism of the generation of magnetic charge can be related with the
topological features of the collapse zone.

2. Generation of these monopoles took place during the break of stable monopole-
antimonopole pair of cosmological origin in very strong squeezed magnetic field.

Let us consider the parameters of such processes.

Parameters of such pair can be calculated with the use of conservation law for its total energy

2
2 2 2 2 4( ) 4 0g

g
M r c p c M c

r
    (3)

and uncertainty relation
2 2 2 / 4p r   (4)

In this case the minimal meansquare size of monopole-antimonopole pair and maximal
meansquare impulse of relative motion are following

2 2 2
min min / 2 gr r g M c  , (5)

2 2 2
max max min/ 2 /gp p r M c g    (6)

From (5) it follows that rmin  10-12 cm (if monopole mass Mg equals proton mass
mp =1.6.10-24 g) and rmin  10-9 cm if monopole mass equals electron mass.

The potential energy of monopole-antimonopole pair with the size of rmin is

2
2

0 min

min

| ( ) | 2 g

g
V r M c

r
  (7)

The maximal kinetic energy for relativistic and nonrelativistic motion of monopole and
antimonopole inside the pair is described by the equations

2 2 2 2 2 2
max max min/ 2 / 4 ( / )nonrel

g g gT p M r M c c g    , (8)

2 2
max max min/ 2 ( / )rel

gT p c c r M c c g    (9)
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Here / 2g gM  is the reduced mass of monopole. From last two equations it follows that

the motion of monopole (antimonopole) inside the pair is nonrelativistic:
2

max max,nonrel rel
gT T M c .

From formulas (7-9) it also follows that the ratio of kinetic and potential energies in each pair
is very small both in nonrelativistic and relativistic cases

2 2
max 0 min/ | ( ) | ( / ) / 2 1nonrelatT V r c g  , (10)

2
max 0 min/ | ( ) | ( / ) / 2 1relatT V r c g  (11)

This result proves that monopole-antimonopole pair is very stable neutral system.

The total mass of such system in stable bound state

2 2
2 2 2 2 2 2 2

min max min2 2
min min

2

2 2

( ) ( / ) 4 ( / 4 ) 4

2 (137)

g g

g

g
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M r p c M r c M

r c r c
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M

g

      

 
 

 




(12)

is very small.

In fact such pair is an invisible electro- and magneto- uncharged and extremely light object.
It is possible that such objects have existed (unnoticed) in the universe from the moment of the
Big Bang.

2. Break of monopole-antimonopol pair in a strong magnetic field
In Fig. 4 the structure of the potential hole of monopole-antimonopole bounded pair in the

cases of presence and absence of external locally homogeneous magnetic field H0 is presented.

Under the external magnetic field action the essential deformation of potential hole takes
place. It leads to the possibility of tunneling of one monopole and to the spontaneous brake of
the monopole-antimonopole pair. The probability PH and the life-time H of such tunneling
effect is similar to the probability of nuclear alpha-decay

2

1

2
max min max max

0 min min 0 1 1

1/ ( / ) ; / ;

1
2 | ( ) ( ) | , ( ) ( ),

W
H H g

r

g H H

r

P v r e v p M

W V r V r E dr E V r V r





  

    
(13)

2
0/ , ,o HV g r V gH r   

r1 and r2 are the classical turning points for the potential energy V(r) = V0(r) + VH(r)
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V0(r) = - g2/r

VH(r) = - gH0r

V(r) = V0(r) + VH(r)

r

V(r)

Emin
r2r1

Monopole-antimonopole pair

Free
monopole

Potential energy of pair
(without magnetic field)

Potential energy of pair (in
presence of external
magnetic field)

Figure 4. The structure of the potential hole of bounded monopole-antimonopole pair in the cases of
presence and absence of external magnetic field.

The resulting expression for the probability of such tunneling effect is the following
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Here pm - proton mass.

For light Lochak's monopole with Mg=mp and H0  1015 Oe we have H 10230 years.

For light monopole with Mg=me and H0  1010 Oe, H  0.1 s.

For very light "Lochak's" monopole with Mgс
2  1 keV at H0  107 Oe, H 10-7 s. Formation

of such (and much more strong) magnetic field takes place in "Proton21" Lab experimental
setup during fast pinch-effect of hard-current electron beam [3].
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Abstract
The existence of heavy electrons is found theoretically in nano-structure clusters
of disordered solids. The basis of the investigation is the electron band structures
of disordered semiconductors previously determined by the author. The
existence of electron energy pockets is found for the electrons in the conduction
bands of these semiconductors that are nano-confining potential valleys of
dimensions in the range of the primitive cell. The electron wave function of the
confined electron is determined in when the electron interacts with local
electrical field that is external for the energy pocket, and the average velocity of
the electron is found. An expression for electron mass of an electron localized in
pocket is derived. It is found that this electron mass is greater than the electron
mass at rest and the confined electrons are designated heavy electrons. The
possibility of interactions of protons with heavy electrons is discussed.

Introduction
The problem about the electron effective mass in solids is important with regard to both

electron and optical properties of solids. The usual methods of determining the electron
effective masses are connected with preliminary calculations of corresponding electron band
structures and further computations of electron mass values. These approaches assume there are
no external radiations (laser, etc.) that interact with the electrons in solids leading to electron
mass renormalizations according to a determined rule [1, 2]. Generally it can be considered that
all effective mass calculations about the charges (electrons and holes) in solids are based on the
corresponding electron band structures ignoring the rule given in [1, 2]. However, recently
some authors [3, 4] have considered the impact of interaction of external electro-magnetic field
with electrons in solids on the electron effective mass, and they have found that increase of this
mass can be expected. Although the authors of [3] in comparison with the authors of [4] give
different estimation of the impact of an external electro-magnetic field interacting with
electrons on the electron mass both works [3] and [4] can be considered as contributions in the
theory of the effective mass of heavy electrons. Both works assume the existence of heavy
electrons in nano-layers on the electrode surface.

The author’s research progress [5-8] in determining the electron band structures of disordered
semiconductors is the basis of this paper. Previously calculated electron band structures of
disordered nitride semiconductor compound alloys are used and the existence of energy pockets
for electrons in conduction bands is found. These energy pockets are found to be potential
energy valleys in the conduction bands having dimensions in the range of the primitive cell.
Interaction of external electrical field with electron located in energy pocket is investigated and
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the corresponding electron wave function of the confined electron in a free electron
approximation is determined. Formula for effective mass of a confined electron in pocket is
derived and conclusions are drawn about the existence of heavy electrons. The interaction of
the heavy electrons with protons is discussed.

Electron band structures of disordered solids and electron energy pockets
Disordered solids having common formula AxB1-xC (0 ≤ x ≤ 1, A and B have equal valences) 

are called multinary crystals. A multinary crystal is considered to be a periodical crystal having
a large primitive super-cell, containing a finite number of quasi-elementary cells. It is found [5]
that the electron energy in a primitive super-cell of the multinary crystal can be presented in the
following way:

E(r) = ∑q  (r – Rq) E(q) (1)

Where r is the radius-vector of the electron, E(q) is electron energy in the quasi-elementary cell
q and  (r – Rq) is a delta-function. The electron band structure of the multinary crystal can be
determined on the basis of local interactions within the primitive super-cell, which determine
the corresponding sub-bands. As a matter of fact the electron band structure of the multinary
crystal determined in this way contains the same sub-bands as those determined for the
primitive super-cell of the same multinary crystal without consideration of the localizations of
the interactions. However the sub-bands determined by (1) are localized in the corresponding
quasi-elementary cells. Linear combination of atomic orbitals (LCAO) method is used by the
author for electron band structure calculations for disordered solids in case of nitride
semiconductors.

After detailed investigation, the author found [5-8] that the properties of a disordered
semiconductor can be determined if it is taken only a part of the calculated LCAO electron
band structure corresponding to configuration of quasi-elementary cells giving the deepest
energy pocket for the electrons in the conduction band, deepest energy pocket for the holes in
the valence band, and that these energy pockets are at the shortest distance. To satisfy these
three conditions, a configuration of five different types of wurtzite quasi-elementary cells taken
in the following order must be used for InxGa1-xN (Fig. 1):

(1) Pure GaN quasi-elementary cell containing two atoms of Ga and two atoms of N
surrounded by second neighboring Ga cations

(2) Mixed In-GaN quasi-elementary cell containing half atoms of In, one and half atoms of Ga
and two atoms of N, having second neighboring cations In and Ga

(3) Mixed In-GaN quasi-elementary cell containing one atom In, one atom Ga and two atoms
of N, having second neighboring cations In and Ga

(4) Mixed In-GaN quasi-elementary cell containing half atoms of Ga, one and half atoms of In
and two atoms of N, having second neighboring cations In and Ga

(5) Pure InN quasi-elementary cell containing two atoms of In and two atoms of N, having
second neighboring cations In. Each type of quasi-elementary cell forms sector  of the
corresponding electron band structure ( = 1, 2, 3, 4, 5)
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The same method can be used for calculation of energy band structures of other disordered
semiconductors – nitrides, arsenides, etc. The author has made LCAO electron band structure
calculations [5 – 8] for InxGa1-xN (Fig. 1), for InxAl1-xN, for GaxAl1-xN, for InOyN1-y and for
non-stoichiometric InN:In .The energy levels 

c1 are the bottom of the conduction band, and
the energy levels 

v15 are the top of the valence band. All energies are determined by taking
the energy of the vacuum as being equal to zero. (The values shown in Fig. 1 correspond to a
ratio of 1:1 between the surrounding atoms of different sorts.) The energy difference E

g = (
c1

- 
v15) gives the energy band gap of sector . The energy level 4

c1 for InxGa1-xN (Fig. 1) is
below the neighboring levels 3

c1 and 5
c1, which means that an electron occupying this level is

confined in local potential valley 4
c1 of the conduction band of InxGa1-xN. In addition the

dimensions of this valley are equal to the dimensions of the quasi-elementary cell of InxGa1-xN
containing half atoms of Ga, one and half atoms of In and two atoms of N, having second
neighboring cations In and Ga, and these dimensions are in the range of the primitive cell – i.e.
one can consider that 4

c1 forms an electron energy pocket. The same consideration can be
done for the level 3

v15 in regard to holes in the valence band of InxGa1-xN, however in this
paper it is assumed that the valence band is fully occupied in term of electrons, i.e. there are no
holes, and there are no inter-band electron transitions.

Figure 1. Electron band structure of InxGa1-xN. The electron energy pocket is designated.

Effective mass of confined electron in pocket

If an electron occupies the state 4
c1 in InxGa1-xN it will be confined in the pocket and its

further participation in a charge transfer along the solid will require its removing from the level
4

c1. One considers this removing to be done by electrical filed in order the results to be
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applicable in case of interaction of other charged particles such as protons and deuterium nuclei
with confined electrons. An applied electrical field can remove the confined electron by
quantum tunneling trough potential barrier [9]. In this case one can write:

Ψout(xμ) = D1/2  Ψin(xμ) (2)

Where Ψin(xμ) is the wave function of the confined electron, Ψout(xμ) is the wave function of the
electron after the barrier, and D is transmission coefficient. The applied electrical field has
strength ξµ acting in direction xμ. According to [9] one can write (k is electron wave vector):

                                                       Ψin(xμ) = A exp(i kµ xμ) (3)

Ψout(xμ) = C exp(i kµ xμ) (4)

The process of quantum tunneling of an electron confined in pocket 4
c1 in InxGa1-xN is

schematically described in Fig. 2. In fact the line 
c1 is the bottom of the conduction band at

point  in the electron band structure in Fig. 1, and 
v15 is the top of valence band at point  of

the same electron band structure. The shifts of the lines 
c1 and 

v15 in Fig. 2 are due to
influence of the electrical filed ξµ having designated direction on this figure as well.

ξμ 

xμ


c1


v15

Sector 5 Sector 4 Sector 3 Sector 2 Sector 1 Sector 2 Sector 3 Sector 4 ………

a

Figure 2. Electron band structure of InxGa1-xN in external electrical field (not in scale). The
tunneling from level 4

c1 is shown.



494

According to both [9] and Fig. 2 the transmission coefficient of quantum tunneling trough a
potential barrier of with a is

D = exp{- (2/ħ) dxExUm
a

 
0

2/1)])((2[ } (5)

Where E is the electron energy, U(x) is the potential function of the barrier, m is electron mass
on level 4

c1, and x = xµ. Also m = m*m0 where m* is electron zone mass and m0 is the electron
mass in rest. The author assumes that the bottom of the conduction band in a pocket has the
same behavior as the bottom of the same band of pure semiconductor built by the same
chemical elements as these presented in the corresponding sector. In this way the author
assumes that m*≠1. Using Fig. 2 one can write for U(x) (x = xµ):

U(x) = U0 - qξµxµ (6)

Where q is electron charge and U0 is average height of the potential barrier for ξµ=0.

It can be considered a free electron having mass m moving after the barrier. According to

[10] the average value of the velocity v out of this electron in direction xµ is:

v out = (ħ / 2 m i) ∫ { Ψ*out(xμ) д Ψout(xμ) / д xμ - Ψout(xμ) д Ψ*out(xμ) / д xμ}d xµ (7)

Considering (2) and (5) one can write

v out = (ħ / 2 m D-1 i) ∫ { Ψ*in(xμ) д Ψin(xμ) / д xμ – Ψin(xμ) д Ψ*in(xμ) / д xμ} d xµ (8)

or

v out = (ħ / 2 meff i) ∫ { Ψ*in(xμ) д Ψin(xμ) / д xμ – Ψin(xμ) д Ψ*in(xμ) / д xμ} d xµ (9)

Where meff is defined to be effective mass of the electron confined in an energy pocket and

meff = m D-1 = m*m0 exp{(2/ħ) 0*2 mm dxExqU
a

2/1

0

0 ][   } (10)

Where the condition U0 - q ξµ x – E ≥ 0 must be obeyed. The meaning of (10) is that one can
treat a confined electron as a free electron having electron effective mass meff. The expressions
(7) – (10) can be used in case of interactions of a confined electron with local fields of strength
ξµ – for example with charged particles (other electrons, protons, deuterium nuclei, etc.). The
author considers that these expressions can be used for description of currents using confined
charges in disordered solids however corresponding corrections accounting other phenomena
must be made as well.
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The expression in the exponent of (10) is positive and therefore meff ≥ m*m0. It is the reason
that the author to consider that the confined electrons are heavy. The formula (10) provides that
if E→U0 or/and a→0 then meff → m*m0. This expression includes parameters a, U0, E and m*,
i.e. meff depends on the properties of the electron band structure and for ξµ = const. (or weak ξµ)
further change of meff is possible only by change of m*. As it was mentioned above the electron
effective mass meff can be used in case of interaction of heavy electron with other charged
particles including protons and deuterium nuclei. In this way it is useful the effective Bohr
radius [9] to be determined

aB eff = ħ2 / meff q2 (11)

Using the author’s previous results [5 – 8] for LCAO electron band structure calculations and
expressions (10) and (11), the parameters meff and aB eff for heavy electrons in InxGa1-xN, in
InxAl1-xN, in InOyN1-y and in non-stoichiometric InN:In are found for: i) weak local electrical
fields ξµ << (U0 – E) / (q a); and ii) strong local electrical fields ξµ = (U0 – E) / (q a). It is
accepted that m* = 0.18 for all nitride semiconductor materials. It is assumed that a
corresponds to shortest possible distance between two nearest electron energy pockets. This
situation is shown in Fig. 2 and it can be achieved technologically in nano-layers. The results
are summarized in Table 1. It is important to be noted that the impact of the heavy electrons on
the electrical properties can be expected to be significant in nano-structures having low
concentrations of light electrons. Also this impact is higher in wide energy band gap disordered
materials because the influence of the defects on the conductivity is small. Existence of heavy
electrons in non-metal nano-layers – for example in nano-structures of metallic hydrides on
metal surfaces – can be expected as well.

Table 1. Effective masses and effective Bohr radii of heavy electrons in several disordered
solids

meff, in m0 units aB eff, Å
weak field strong field weak field strong field

InxGa1-xN 851.02 50.89 0.62*10-3 0.0104
InxAl1-xN 3.41 1.28 0.1553 0.4134
InOyN1-y 11.96 2.96 0.0442 0.1788
InN:In 286.41 24.61 0.0018 0.0215

Discussion about possible interactions of protons with heavy electrons
It can be seen in Table 1 that the effective mass of the heavy electrons can reach high values

in some materials. However it depends on the local field. Therefore the necessary and sufficient
condition that the heavy electrons to behave as heavy negative particles in interactions with
other charged particles is that the field of every interaction must be weak.

In the light of the above if this condition is fulfilled, a heavy electron eh
- can participate in

process [3, 11]:
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eh
- + p+ → n + νl (12)

Where p+, n and νl designate proton, neutron and neutrino respectively. In order for this process
to take place the following threshold condition about the effective mass of heavy electron eh

-

must be fulfilled [3]:

β = meff / m0 > 2.531
(13)

The effective masses from Table 1 even for strong field interactions (except for InxAl1-xN)
fulfill the condition (13).

It must be noted that certain particles must reach the region where the heavy electron is
localized for the interaction to occur; i.e., the probability of the interaction of heavy electron–
particle is higher in nano-layers or in nano-structure clusters that are close to the surface.

Conclusion
This paper can be considered the author’s first contribution in the field of interaction of

charged particles with electrons localized in solids. Although the existence of heavy electrons
in nano-structures is shown theoretically the author considers that the conditions about weak
interaction in solids must be found in order further study of heavy electron-particle interactions
to be performed. Finding of these conditions will be subject of a future work. Future work will
also consider the role of heavy electrons in metallic hydride nano-layers.
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ABSTRACT
This report examines, in the light of new evidence, whether low energy nuclear
fusion can possibly conform to fundamental laws of physics. The new evidence
examined here may explain two cited deficiencies, the lack of a sufficient
deuteron coupling mechanism and the lack of certain nuclear by-products. The
concept that heavy electrons (fermions, pseudo-particles) are able to screen
deuterons may have been dismissed too early. In this paper we show that heavy
electrons may cause a high degree of localization, a central effect that is needed
in the screening process. Many heavy electron (heavy fermion) materials exist,
and in many of these, an increase in electron localization on lattice sites has
already been seen directly. The lack of nuclear by-products may in fact be
explained by a physically reasonable interaction between four deuterons in
which only easily absorbed alpha particles and low energy gammas are
produced.

1. INTRODUCTION
The many positive reports of success in recent low energy nuclear reaction (LENR)

processes lead one to wonder if there isn’t a possible, perhaps unexplored, set of physical or
chemical electrolysis principles by which they may be explained. In this paper a set of
possibilities is put forward in hopes that experiments will be performed to answer this question.
These possibilities consist of the application of heavy pseudo-particles to provide the detailed
localization and inertia needed for effective Coulomb screening, and multiple deuteron
interactions in which only easily absorbed alpha particles and gammas are produced [1].

The critical view of research in the LENR area is based mainly on the lack of an established
screening mechanism, and the lack of observed nuclear by-products, making it hard to
reconcile the purported observations with well established physical principles. This situation
has continued to the present time in spite of the publication of numerous reports of positive
experimental results, with correlated improvements in reproducibility.

Two prominent expositions are those of Leggett and Baym [2] and Koonin and Nauenberg
[3]. Each of these is mainly concerned with the lack of a strong coupling method rather than the
lack of fusion by-products. A possible method out of this difficulty is addressed in Section 2. In
Section 2.1 it is argued that high effective-mass in some cases allows a localization of the
pseudo-particles on lattice sites. An operative question is on how fine a spatial scale these
heavy mass effects occur. Section 3 discusses the crystalline geometries. Section 4 uses the
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results of the previous sections to propose a possible fusion mechanism. The other question,
about possible explanations for the absence of fusion by-products, will be addressed in Section
5.

2. POSSIBLE SOLID-STATE MECHANISM TO PROVIDE STRONG
COUPLING

It is common knowledge that muon induced fusion has been produced in the hydrogen
molecule. The muon, a particle similar to the electron but having a mass 207 times larger, when
substituted for an electron in a hydrogen molecule, causes hydrogen isotopic nuclei to come
closer to each other (by about 200 times). This is well understood by modern physical
principles. The result is a much increased rate at which the nuclei fuse. This increased rate is so
much larger than for the normal hydrogen molecule, that the method has been extensively
investigated for use in fusion energy production. The muon exists for too short a time to
produce enough fusions for a practical application.

Koonin and Nauenberg [3] give details showing that putative electrons with an extra mass
can increase the rate of fusion of the nuclei in molecular hydrogen. An electron with five times
as much mass could generate fusions at the level reported by Steven Jones, et al. [4], and a
mass ten times heavier might generate fusions at a rate in line with the original Pons and
Fleishman [5] reports.

Is it possible that deuteron fusion may be enhanced by use of heavy electron materials? If so
the enhancement would need to be caused by a more effective negative electron screening of
the deuterons’ positive charges. The critical question in this regard is whether the action of
these pseudo-particles is at all similar to that of heavy electrons on the fine spatial scales
required. There are many indications that it is. For many solid state phenomena, such as the de
Haas-van Alphen effect (DHVA) [6], experiments show them performing like individual but
heavier electrons. Luttinger, in discussing the DHVA effect in a system of interacting pseudo-
particles states that his result “… is exactly what one computes on a single-particle basis,
except that the true single-particle excitation energies must be used,…[6] “ Other phenomena
that have been explained using a single-particle description of heavy fermions include
electronic heat capacity, Pauli spin susceptibility, Landau diamagnetic susceptibility, and
electrical resistance and mobility. It is possible that only experiment will tell the smallest
(finest) spatial extent of these effects.

Heavy mass also implies the existence of an inertial effect, and this means that its negative
charge could resist being pushed or accelerated out of locations such as between two or more
deuterons. This is important since it implies that the heavy-electron has a smaller wavelength in
any given energy state than single electrons in a simple tight binding model.

Palladium, platinum, nickel, and cobalt, as tabulated by Kittel [7], are materials with a very
high electron effective-mass. Today’s interest in heavy fermion materials, on the other hand,
arises largely from the fact that many high-temperature superconductors (copper oxides) belong
to this class. It may be of interest in this regard that hydrogen doped palladium is a
superconductor, with an increasing critical temperature with hydrogen loading. Along with
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having superconducting phases these materials often exhibit ferromagnetic and anti-
ferromagnetic phases [8, 9]. Heavy fermion properties continue in the so-called normal phase
that occurs above the superconducting critical temperatures.

Heavy-electron materials include, but are not limited to palladium, platinum, nickel, cobalt,
niobium, tantalum, vanadium, titanium, tungsten, yttrium, and zirconium atoms. Heavy-
electron materials may be other than the transition metals. These include CeCu2Si2, UBe13,
UPt3, URu2Si2, UPd2Al3, UNi2Al3, CeCu2Ge2, CeRh2Si2, CePd2Si2, CeIn3, and many others. To
our knowledge, prior to this report this type of material has never been considered for low
temperature fusion when embedded with deuterons. An additional fusion possibility occurs
when one of the high temperature superconducting materials is substituted for one of the
transition metals. These materials include the doped lanthanide copper oxides, the yttrium-
barium-copper oxides, those with the generic composition RBa 2Cu3O7-x in which R stands for
yttrium or one of the lanthanide rare earths, and many others in this copper oxide family.

The suggestion is made here for the first time that low temperature fusion might be expected
to occur in any of these heavy electron systems if they contain absorbed deuterons. A more
reproducible effect may occur. An interesting experiment should be performed by embedding
deuterons in these materials and investigating possible fusions at low temperatures. At these
temperatures the fermion heavy mass effect is well demonstrated for many of them.

Koonin and Nauenberg point out that effective-mass “should not be associated with any
physical excitation in a solid material, as only the bare electron is relevant at the short length
scales that are important here.” The Energy Research Panel Advisory Board investigating early
fusion reports stated that “…this phenomenon is described as… involving strong correlation
near the Fermi surface. As such, heavy fermions extend over many lattice sites. …. only short-
wavelength ‘bare’ electron excitations are relevant for screening…” [10].This statement is
correct for the classical effective-mass concept. It omits consideration of many materials with
very heavy effective masses caused by other strong interactions. Could it be that these authors
have inadvertently given away a major advantage of the solid state medium by not expanding
the scope of what they mean by effective-mass? Heavy electrons correspond to pseudo-particle
peaks in an energy spectrum, and in addition they may be broadly spread in wavelength. This
spreading is particularly significant if the pseudo-particle resides on or near the Brillouin zone
boundary. Based on elementary Fourier analysis the pseudo-particle spatial distribution is
concentrated in smaller regions when the wave number distributions have these broadened
properties.

It is because pseudo-particle phenomena are coherent (highly correlated) over macroscopic
volumes that the concept of pseudo-particle mass in these heavy fermion materials may be
important. Here, ‘spatial bandwidth’ refers to the width of the band of wave numbers near the
peak energy of the pseudo-particle [12]. A Fourier expansion in terms of these wave numbers
can produce a periodic but apparent unit-cell-localized result as is easily demonstrated. Also
Fourier expansion in terms of a band of wave numbers concentrated around one-half this wave-
number, /(2 )a with a equal to the square-lattice spacing, may produce unit cell localized

results that occur on every second unit cell, etc.
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The higher the mass of a particle (or pseudo-particle) the greater is our ability to localize it,
and vice versa [13]. In the following paragraphs this relationship will be used to point to the
fact that high effective-mass pseudo-particles can imply high localization of electrons (and
charge stiffness) on the atomic lattice sites. This in turn will be used to argue that the effect of
the heavy-electrons in a palladium lattice doped with deuterons may be to provide a much more
effective screening effect between deuterons.

2.1. HIGH PSEUDO-PARTICLE MASS AND LOCALIZABILITY
Pseudo-particles may acquire the effect of an additional mass through mutual interactions in

a many-body system [7, 14, 15]. Consider a many–body system with a Hamiltonian

0 1H H H  , (1)

where 0H and 1H are the free particle and interaction Hamiltonians respectively. If the free

particle Green’s function 0G (based on 0H ) is known, the many-body Green’s function may in

principle be found by solving the Dyson equation

0 0G G G G   , (2)

in which 1 2 3 ......      is known as the “irreducible self-energy part” or “the mass

operator” [14, 16]. It is the expression for the contributions to the mass of a quasi-particle
generated in the system due to inter-particle and lattice interactions. The expression for is a
sum of progressively larger (but weaker) stages of the interaction. After “mass
renormalization” the Green’s function is commonly expressed in the frequency-wave number
( , )k  domain as

1( , ) [ ( , )]kG k e k      , (3)

in which is in general a complex number. ke is the peak energy in a band at wavenumber k.

The corresponding spectral function is

1
( , ) Im( ( , ))A k i G k 
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where Re( ( , ))r k    ,and Im( ( , ))k   are the real and imaginary parts of  .

The spectrum is a Lorentzian density if , the imaginary part of controlling the lifetime of

the pseudo-particle, is independent of energy. If ke and k are to be good (stable) quantum

numbers the imaginary part must be small and the particle lifetime long. The real part of is
the contribution to the pseudo-particle’s effective-mass in addition to that that an electron has
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in, for example, a single electron tight binding approximation [7, 14]. Since the target crystal
lattices are mostly cubic, the spectrum may be treated as being isotropic.

An extremum of the spectral function occurs where ( )k k rE k e    . For a particular

direction in wavenumber space the point at which the extremum occurs will be denoted 0k k .

For an isotropic environment the effective-mass [14, 17] evaluated for the pseudo-particle
representing the spectral peak, has the definition

0

0 0

2

2
( )
,

1

k k

k

k
k k e e

E

m k  



 





. (5)

When the expression for the energy is expanded about this peak it becomes
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which, for small , is the transfer function of a linear system having a peak whose wave

number mean-squared bandwidth is proportional to m , and this in turn corresponds to an
impulse response that is highly peaked spatially with appropriate periodicity and with a mean-

squared spatial width at lattice sites proportional to1/ m [16]. The Fourier transform of a
narrow spectral band extends periodically and is seen to have a spatial resolution inversely
proportional to the band’s wave-number bandwidth. Thus a narrow spectral (energy) bandwidth
implies a broad correlation in space, but not necessarily a long wavelength if its wave number
contributions are near a zone boundary.

Thus far the objective of this section has been to show that a spectral line corresponding to
heavy-electrons or pseudo-particles, though defined over long ranges, is spatially periodic and

is locally concentrated within any one or two spatial periods, if its 0k is near (or a significant

way toward) the zone boundary, and if it has a large enough wave-number spread.

Alternatively, if 0k is located half way to the boundary the localization, while still

concentrated, may occur at alternate unit cells, etc. Unless the pseudo-particle represents a
moving charge density wave, the charge will be concentrated on atomic lattice sites. This
implies concentration near the positive hydrogen nuclei. This is particularly true if the heavy-
electronic system conforms to a model similar to the Hubbard model, for which (two) electrons
being confined on a site, in a lattice with more than one electron per site, is a basic part of the
model.
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The Hubbard model [18, 19], along with the Kondo model, is commonly used to explain
heavy-fermion systems. A characteristic is a configuration of atoms with near-half filled 4d or
5d-shells forming a narrow band interacting with atomic sites. The narrowness of the d-band,
along with the interactions, implies a high degree of correlation among the electrons. To
explain certain behavior, the Hubbard model contrasts this implied delocalized band motion
with the effect of a tight-binding model in which excess d-electrons (or holes) are allowed to
spend a proportionately large amount of time in the vicinity of the lattice sites. The Hubbard
Hamiltonian may be written in the following form

, ',
, ',

i i i i
i i i

H t c c U n n 


 

    . (8)

Here the sum over means a sum over up and down spins,
,i

c


 is a creation operator for an

electron with spin at lattice site i , and ',ic  is the corresponding annihilation operator at site 'i

. If an electron is created at i and another is annihilated at 'i , one says that the electron has
hopped from one site to the other. It is generally found that a physically verifiable model may
be achieved even when these hopping transitions are restricted to adjacent lattice sites. This is
called hybridization between states on neighboring sites. The second sum is over number

operators: in

, for example, is the number of electrons with up-spin at site i , etc. As usual,

i i in c c
  

 , and i i in c c
  

 . Each of the terms in the second sum corresponds to two electrons

interacting at the same site. t and U are coefficients that determine the relative contributions of
the two terms. From the point of view of wanting charges concentrated at lattice sites for the
purpose of screening hydrogen nuclei a large value of U is desirable, but hopping may also be
allowed in order to transfer the charges between the transition metal atoms and the hydrogen
nuclei and so-forth.

In this section it has been recalled that palladium, and the other metals that have been
involved in LENR are members of the class of heavy-electron metals, and it has been
demonstrated that this implies, in some metals, a high degree of localizability of the electrons
on atomic lattice sites. Thus it is possible to question the claim that there is no conceivable
strong coupling between the metal lattice, the electrons, and the embedded hydrogen nuclei. It
is possible to argue to the contrary. But the electrons need to screen the positive charges, and
the screening effect must be large enough, and must be accompanied by localization of
electronic charge at lattice sites. That such a screening effect is large enough has not been
proved here. But it has been shown that there that it is reasonable to look for a large effect that
localizes charge at lattice sites with attributes of heavy mass. This indicates that a high level of
screening by this mechanism may indeed be available.

It has been argued that the heavy nature of pseudo-particles in certain materials can enhance
localization of electronic charge on lattice sites. It is appropriate at this point to recall that
charge concentration on lattice sites has recently been directly observed on surfaces of high
temperature superconductor classes of materials [8, 10].
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3. GEOMETRIC STRUCTURES
Before estimating the feasibility of multiple nuclei interactions, it is appropriate to review the

crystal geometries that are involved [20, 21]. Henceforth, when the term deuteron is used it will
represent any of the three hydrogen isotopic nuclei. Fig. 1 shows an arrangement of palladium
atoms and deuterons in a planar configuration that occurs when the 4-d transition metals are
highly doped with absorbed deuterons. Palladium is used here as an example of metals that
have been used in claims of successful low temperature fusion experiments. It may be of
interest to point out the similarity of these planar configurations to the arrangements of copper
and oxygen atoms in planes occurring in the copper oxide high temperature superconductors
[22]. In the copper-oxygen configuration, there is a plane where the copper atoms occupy the
locations of the palladium shown here and the oxygen atoms occupy the locations of the
deuterons. The statement of the similarity may imply that the configuration is common to a
complete class of heavy electron (high effective-mass) materials. Subsequent figures show how
these planar arrangements appear in three types of crystalline unit cells.

Figure 1. Two-Dimensional Arrangement of Transition Metal and Deuterium in a Disposition Similar to
That in the Active Planes of Typical High-Temperature Superconductors.

Fig. 2A shows an atomic arrangement of deuterons in a body centered cubic (bcc) lattice,
where the deuterons, with a slight effort, may be seen to be residing on planes. These are planes
on which convergence of the deuterons (shown in Fig. 4) may be induced. Fig. 2B shows an
atomic arrangement of deuterons in a face centered cubic (fcc) lattice, where the deuterons also
reside on planes on which convergence of the deuterons may be induced.

-Deuterium -Transition Metal (e.g., Palladium)-Deuterium -Transition Metal (e.g., Palladium)
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Figure 2. Atomic Arrangements of Hydrogen in a bcc Lattice, Left, and an fcc Lattice, Right. These are
Arrangements with Tetrahedral Symmetry.

Fig. 3A shows an octahedron enveloping a deuteron indicating an arrangement in which
deuterons have this octahedral coordination. Fig. 3B shows a planar square sub-lattice in the
case where deuterons have octahedral coordination. Fig. 3C shows a tetrahedron with a
deuteron on each vertex, the center of which may be the locus of convergence of the deuterons.

Figure 3. In Lower Concentrations, Hydrogen is in Sites with Octahedral Symmetry in an fcc Lattice. An
Octahedron Enveloping a Hydrogen Nucleus is Seen on the Left. A Plane Square Sub-Lattice Containing
the Octahedral Hydrogen Nuclei is Indicated on the Right. A Tetrahedron with a Hydrogen Nucleus on

Each Vertex is Shown Below.

This last sort of convergence to the center of a tetrahedron is similar to that proposed by A.
Takahashi [1, 23] in his electron quasi-particle expansion theory (EQPET). His theory involves
the convergence of deuterons (along with certain electrons) toward the centers of the
tetrahedrons with convergence being due to “transient Bose-type condensation (TBC) of

A B

A B

C
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deuteron cluster at PdDx lattice focal points” [23]. This is not required in the mechanism
proposed in this report.

4. A MODEL FOR LATTICE, ELECTRON AND DEUTERON
INTERACTION

In order to motivate the investigation of whether nuclear reactions could possibly be
explained using basic principles, a general concept illustrated in Fig. 4, is introduced. The
figure shows a two-dimensional lattice excitation, or motion, with deuterons converging toward
one another as a part of general lattice vibration modes, with the arrows being reversed after a
180 degree phase change. The figure is an adaptation of Fig.1 in which lattice motions of the
deuterons have been generally indicated. At a time corresponding to a half period later the
deuterons have reversed directions. This motion is a part of high wavenumber lattice
excitations that are an integral part of an ambient (optical and longitudinal) phonon spectrum.
The corresponding wave numbers in the plane are substantially near a Brillouin zone boundary

( 2 ,a ak     with a equal to the spacing of the square lattice.) Motions of the lattice host atoms

(solid circles) are not indicated since they may assume different forms for different lattice
normal modes. This particular mode for the vibration of the deuterons is not the only dynamic
mode that may be important to the process described here, but it is one which may produce
results that are consistent with recent measurements of surface charge ordering [8, 9].

Figure 4. Two-Dimensional Lattice Excitation, with Hydrogen Nuclei Converging as a Part of General
Lattice Vibration Modes That are Enhanced by Heavy Electron Screening.

The concept is as follows. The system is chosen to consist of a transition metal in the heavy-
electron class in which deuterons are embedded. The extent of loading of the deuterons is
stoichometric (PdxD, x=2 or less.) An electron model such as the Hubbard model applies. This
implies that electronic charge is localized to a large extent on the positive ions, i.e., the metal
ions and the deuterons. This charge localization is a result of the heavy-mass-pseudo-particle
many-body phenomenon. Because negative charge screens the positive charges of the

- Deuteron - Matrix atom (e.g., Palladium)



512

deuterons, their interaction is affected and enhanced by this concentrated cloud of negative
charge. The Born-Oppenheimer approximation applies only insofar as the positive ions have
much greater mass than the electrons, meaning that their displacements are slow variables in
the many-body system. The electronic structure however is strongly affected (slaved) by their
motions. The closer any number of deuterons is grouped, the greater is the mean positive
charge in their vicinity and, in response, the localized negative charge is greater.

The electronic response is not without inertial effects because of its heavy mass, and this
offers the possibility of a resonance of sorts with the motion of the deuterons. A set of deuteron
motions tending to a common point, as in Fig. 4, induces a screening effect such that the lattice
vibration force constants for these motions are greatly reduced. The amount of reduction is
greatest on the two-dimensional Brillouin zone-boundaries of the lattice planes containing these
vibrating deuteron modes. This is because these are the wavelengths at which the greatest
spatial convergence occurs. Being on or near the Brillouin zone boundary, these modes possess
phase velocities in the two-dimensional Brillouin zone that are near zero. Considering the use
being made here of comparisons to the copper oxides, the two-dimensional, instead of three-
dimensional, nature of these lattice excitations, along with their wavenumber dependence,
conforms to experimental observations on the “importance of the momentum anisotropy in
determining the complex properties of the cuprates….[9].”

The variation of lattice force constants with wavenumber, due to the screening effect, along
with their dependence on the wave amplitude, is an indicator of non-linear interactions. A
model that fits this type of non-linear wave phenomena, describing the normal modes
(phonons), with need for only minor alteration, has already been worked out. It is presented in
[24] as one possible derivation of the non-linearSchrodinger equation (NSE). An outline is

presented here.

Assume the wave equation ( , ) 0tL u   applies, where L is an operator with constant

coefficients. For small amplitudes any non-linear terms may be neglected in which case the

solution has a form
.( )i k x tu e   , where k and  are related by the dispersion relation

( , ) 0L i k u  .  represents a small number. The non-linearity is introduced by requiring a

specific, but alternate, dispersion relation and introducing this dispersion relation in place of the
linear one in the form,

.( )( , ) 0i k x t
ti i e       . (9)

For the new dispersion relation the function is constrained to be modulated in space and

time in a specified fashion. Without belaboring the point, after expanding the desired dispersion
relation about the linear one, the function is found to first-order to be required to satisfy the

(NSE)

22 21 1
0

2a

i qx
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, (10)
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where the mass at the lattice sites am has been replaced by half em and q is the vibration force

constant for this mode. The parameter is proportional to the first order term in the expansion

of the non-linear dispersion relation in terms of its dependence on the wave amplitude-squared.
This is precisely what is useful in the present context. The parameter must be made a

function of wavenumber matching the physics expected near the two-dimensional Brillouin
zone boundaries as discussed above. Especially it must correspond to a lowering of the mode
energy , per phonon, on this boundary (a reciprocal effect of the electron screening). This
corresponds to an increase in the occupancy of these deuteron many-body oscillator states.

The conceptual model is based on a coupling between the Hubbard model for the electronic
motion and the non-linearSchrodinger -type equation describing the lattice interaction. The

coupling is evidenced in the two parameters: U of the Hubbard model and of the NSE. An

examination of the possibility of resonance phenomena being induced by this type of coupling
is planned. It is anticipated that mode locking and mode competition phenomena will exist, and
these may lead to highly correlated, large amplitude, deuteron motions.

An effect known as a Peierls instability occurs on a zone boundary when the d-band is not

filled and the Fermi level fE falls within the band as described in [25]. A periodic spatial

distortion may happen to induce a lower energy state than that that occurs for the undistorted
lattice. The distortions produced by the motions indicated in Fig. 4 are of just this sort. They
have a periodicity twice that of the lattice, inducing a spatially periodic lattice distortion. This
opens an additional possibility of a time-periodic Peierls instability at the frequency of these
vibration modes.

5. MULTIPLE DEUTERON NUCLEAR REACTIONS WITH NO
UNACCOUNTED BY-PRODUCTS ARE A POSSIBILITY

Typical experiments in nuclear physics involve a high energy projectile (perhaps a deuteron)
directed onto a stationary target (possibly also a deuteron). Also by pointing two high energy
beams at one another, particles may be made to interact. In either scenario, the interaction
between more than two particles is improbable. The probability of having more than two in the
same small volume at the same instant is just too small (unless of course they are already in a
common nucleus). In a metallic, crystalline environment the situation is different. Many-body
interactions are common and varied.

What is missing in the many-body environment is the high energy provided by particle
accelerators, but to compensate for this, electrons are present and they may participate in a role
similar to that of a catalyst (by screening positive charge). No such catalyst is present in the
normal nuclear physics experiment. These are reasons that it is safe to say that when multiple
free deuterons are brought together in the presence of electrons, the detailed physics involved is
not completely understood. There is room for new physics but physics that is still based on
familiar concepts.

The following discussion of fusion products, being expected but not observed, is based on a
fundamental supposition. The reason that proton, neutron, and gamma ray by-products are

h
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expected in D-D reactions is that when energy is released and converted to kinetic energy there
must be something for the helium isotope to react against in order to conserve momentum.
There is no feasible physical mechanism for it to react directly against the lattice mass itself,
often cited as a difficulty for a description of low temperature fusion. But when four deuterons
are brought together, whether all of them are involved in the final reaction product or not, there
are many alternative methods of sharing energy and conserving momentum. The reaction is
expected to involve production of a range of lower energy gammas. The reactions that produce
higher atomic masses are improbable compared to those producing one or two helium nuclei. A
helium nucleus (alpha particle) is one of the most stable (magic number) nuclei in existence. In
the event two helium nuclei are produced they may conserve momentum by reacting one
against the other, rather than ejecting smaller sized particles. In the event a single helium
nucleus is produced it may react against and share energy with the remaining deuterons.

This is an appropriate juncture to address an important point made by Leggett and Baym [2]
to the effect that as two deuterons approach one another the local electron configuration should
approach that of a helium atom. This concept is also found in Baym [26]. They argue that
helium doesn’t have a binding affinity to the metal and as a consequence the deuterons are
energetically less likely to converge. If the convergence is that of four deuterons then the same
argument says that the electron configuration approaches that of a beryllium atom instead, for
which a binding affinity to the host metal is probably more likely.

In this report the possibility of an explanation for the lack of fusion by-products, insofar as
multiple deuterons are involved, is similar to that in Takahashi’s EQPET theory [23]. In this
paper the source of screening would be the heavy-electron character of the materials involved,
along with a non-linear enhancement of the screening effect in a layered structure of deuterons
distributed in parallel planes. Enhancement would be due to heavy-electron interaction with
very short wavelength phonons that are on or near the edge of the planar Brillouin zone. The
planes are formed from deuterons on tetrahedral and octahedral sites. Similarly, thicker planes
are formed by deuterons on octahedral sites.

It should also be emphasized that although four deuterons may be involved not all of them
need to be changed in the nuclear reaction. The dominant expected output is a helium nucleus,
and for this the need for other deuterons nearby for momentum conservation may itself be
viewed as a type of catalytic phenomenon.

Alpha particles are well known to be easily absorbed in air and much more so in water. A 1
Mev alpha particle is absorbed in less than one centimeter of air. A good explanation why
nuclear products haven’t been found in abundance in earlier experiments might be that they
were absorbed in the electrolysis medium prior to detection. The expectations were for
neutrons, protons and gammas. The lack of neutrons or protons observed could actually be a
strong confirmation of the arguments herein in the sense that it implies that if any nuclear
process occurs it must necessarily involve the production of alphas since others have been
eliminated. When alpha particles are absorbed they become helium atoms. If helium atoms are
produced where they didn’t exist before, there has to have been a nuclear reaction of some sort.
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Miles, Bush, Ostrom and Lagowski [26] performed an electrolysis experiment in which the
amount of helium produced was measured along with the amount of excess heat. They were
able to closely correlate the helium and heat production under the assumption that deuterons
fused to form alpha particles with the well known amounts of energy release. This is a strong
confirmation of alpha particle production in a multiple deuteron process.

6. LACK OF EXPERIMENTAL REPRODUCIBILITY AND POSSIBLE
REMEDIES

The fusion mechanism proposed in this paper would be difficult to initiate. In establishing
motivation for the fusion mechanism, various analogies have been drawn between crystal
planes of deuterons in the transition metal hydrides and the copper-oxide planes in high
temperature superconductors. The transition metal hydrides have a much greater symmetry than
the copper-oxides in that there are three or more sets of parallel planes of deuterons in their
lattices. There is a need to break this greater symmetry if the desired vibration mode is to be
established. Interactions in layered sets of a single one of these planes are what are desirable.

The difficulty in establishing these conditions may well be a source of the difficulty in
reproducing these effects. Factors expected to influence the establishment of proper symmetry
conditions are crystal shape, orientation, and electrical and thermal fluxes. A promising method
for reducing the symmetry is the application of an intense magnetic field perpendicular to one
of the planes. As an example, the de Hass-van Alphen effect couples with the electron charge
distribution at the requisite length scale, and this in turn couples to the interaction of the
electrons and the lattice. This effect offers an opportunity to initiate the low temperature fusion
process. The remedy for lack of reproducibility is a proper understanding of the physics and the
development of any method for setting the two-dimensional process in motion. More details are
spelled out in a provisional patent based on this paper.

7. DISCUSSION
This report has not attempted to calculate possible fusion rates. Such calculations are

available. The most quoted calculations are those presented in Koonin and Nauenberg [3],

where they state “A mass enhancement of 5 em m  would be required to bring the cold fusion

rates into the range claimed by ref. 7……An enhancement of 10 em m  is required by the

results of ref.6”. References 6 and 7 are to the papers by Fleischmann, Pons, and Hawkins [5],

and Jones, et al. [4] respectively. The symbol m used here is not the same as the symbol used
elsewhere in this report. Here it denotes the mass of a putative electron that is 5 or 10 times the
physical electron’s mass (similar to the way the muon weighs 207 times as much as the
physical electron).

The fact, as quoted by Kittel [7], that palladium has a high effective-mass, 27 em platinum

has an effective mass 13 em m  , nickel, 28 em , and many of the transition metals are members

of this class may be more than a coincidence.
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It is being argued that, while heavy electrons are long range phenomena, their effect is
periodic and a significant localization effect may occur within a unit-cell. In this sense a
process may have a periodic local effect even if it is itself a long range phenomenon. This is
true if the pseudo-particle is long lived, and has sufficient bandwidth in wave-number space
substantially near a Brillouin boundary. All that is required is this large spatial bandwidth, e.g.
the width of the wave number spectrum around a pseudo-particle peak. That charge
concentrations actually occur in heavy electron materials has been demonstrated in many
experiments recently by direct observation [8, 9]. These recent measurements are, in particular,
indicative of pseudo-particles (resonances) near approximately one-half of the way to the zone
boundary.

There have been authors who advocate effective-mass as a contributor two low temperature
fusion. Parmenter and Lamb [29] made calculations based on an electron screening approach
using a modified Thomas, Fermi, Mott (TFM) equation. Their effective-mass varied with
wavenumber, but in a way opposite to that described above. T. Tajima, et al. [30], have found a
very large screening effect in their candidate process. An interesting result with regard to
screening is that of Hora, et al.[31], who note that the fusion rate changes by five orders of
magnitude if the screening factor changes by only a few percent. They also note that D-D and
D-T fusion reactions are “rather exceptional as the cross sections are up to several barns and the
nuclei react at distances 50 or more times the nuclear diameters.” The implication for multiple
deuteron interactions of an expanded strong nuclear range is apparent, especially if the
deuterons are well screened.

A notable lack in this report has been any specification of electron configurations expected
near the confluence of deuterons on a common site. An investigation of electronic states that
are compatible with the 4d and 5d atomic electron configurations and that are most effective for
bonding and screening is planned. The complexity involved in the hydrides is expected to be as
large if not larger than for the copper-oxides. It is possible that when the transition metal
hydride is doped or otherwise has an excess of electrons, more than one for each metal and
deuteron site, bonding of the types described by Sachdev [32] based on Anderson’s resonating
valence bond idea [33] occurs between the deuterons.

8. CONCLUSIONS
In summary, two major reasons that have been used for rejecting the possibility of low

temperature fusions have been addressed in this report. A significant counter-possibility has
been produced for each of them. It has been postulated that low temperature fusion may not be
barred by any basic principles of physics as has been suggested. Based on this paper, if LENR
is barred at all, it is likely due to inadequate strength of the heavy-fermion screening effect that
has been discussed here.

APPENDIX: EFFECTIVE-MASS AND THE WIGNER LATTICE
The term ‘effective-mass’ is somewhat ambiguous. It has been used since the quantum theory

of metals was first described. If one uses the term effective to mean that effective-mass acts as
the mass of an electron different from that of the natural electron, then it appears that one
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should include what has recently been described as heavy electrons or heavy fermions in the
terminology. In this appendix effective-mass refers to the effect of a heavier mass whatever its
cause. The historical effective-mass appears to be a correlated motion effect of a single electron
moving in a periodic field, whereas the appearance of heavier electronic effective-mass may be
due to correlations with other electrons and the lattice.

One example of electron-electron interactions is found in a Wigner lattice, which is discussed
next. This is significant since it has been observed that effective-mass in systems conforming to
two-dimensional Wigner lattices can range above 150 electron masses [34].

A description of a Wigner crystal may be found in Philips [35]. As the Wigner-Seitz radius sr

is expanded above one atomic unit an electron gas tends to form an ordered array A Wigner
lattice (or crystal) is the name given to a pseudo-equilibrium state involving electrons or holes
in which the electrons or holes find that their lowest energy state in a body-centered-cubic (or
similar) configuration where the renormalized forces are balanced against each other. Such a
state may be stable when situated against a positive lattice background. The configuration is
commonly employed in explanations of the Mott transition. It is a good indicator of the tension
existing between the delocalized band states and the localized atomic states, in a model such as
the Anderson or Hubbard models. The Wigner crystal has been implicated in recent charge-
order investigations [34]. In the description below it is used to illustrate the fact that the
vibrations induced in the Wigner array of confined electrons produce their greatest charge
concentrations on the spatial scale that is conducive to the screening effect described in the
main body of this report.

In the model, as a charge moves away from its stable position it influences charges nearby
and thus produces a correlation. The precise form of the screened potential between two
electrons or holes embedded in a Wigner crystal in metal lattice is not known. Here, with
negligible loss of generality, it is assumed to have the Coulomb form. Only nearest neighbor
interactions on a cubic lattice will be considered for simplicity. The Hamiltonian operator may
be expressed in the form
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where the first sum is over electrons that are each assigned to positively charged lattice

locations, , 1,...,nr n N , and the second sum is over the nearest neighbors to this location.

( )n nV r R is the positive potential about the nth lattice site. The summation over [n] is the

summation over the nearest neighbors that are interacting with the nth electron. The factor of 1
2

is to prevent potentials from being counted twice. Otherwise the notation is standard. The total
wave function is a sum over permutations of the solutions of the joint Schroedinger equation
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with odd permutations weighted by -1. No more than one electron is in any spin-orbit state,
thus satisfying the exclusion principle.

In the second expression for the Hamiltonian the inter-electron Coulomb potentials have been

expanded about the electron equilibrium positions 1n nr r  = a where a is the nearest neighbor

distance in the cubic lattice. The last term in the Hamiltonian has combined the inter-electron
coupling into an effective constant / 2K . The actual coupling constant in a real crystal is the
result of a complex renormalization process involving electron screening. The inter-electron
interaction will be treated as dominating the electronic correlation. The result is that for small
deviations from equilibrium the appropriate Hamiltonian is given by

0 1H H H  , (A.2)

where 1 ( )n n
n

H V r R  is treated as a perturbation.

This form of the equation would result from any inter-electron coupling as long as the first

term in the potential’s expansion in the displacement from equilibrium is quadratic. nR is the

location to which the nth electron is attracted. In this case, 0H is the Hamiltonian of a lattice of

electrons with harmonic nearest neighbor interactions. What is significant here is that this result
tells us that, for the simple case of a one-dimensional lattice, the dispersion relation induced in
the oscillators has the form

1/ 2 2 1/ 2( / ) sin( / 2) ( sin ( / 2) / )l l lK m k a K k a m   . (A.3)

It is important to note that this form implies that the largest effective electronic coupling

constant occurs where /lk a , e.g., on the Brillouin zone boundary. In two dimensions the

loci for the largest coupling parameters are the wave number domain lines , , /l x l yk k a   . If

the electrons are acting with an increased mass, the effective mass may be substituted in this
expression, and it will act to decrease the energy in each mode. The increase in effective inter-
electron coupling in this simple model occurs at locations where it is beneficial for the low
temperature fusion mechanism discussed in the main body. It is also at these wave numbers that
the deuterons are most strongly interacting and it is to be expected that the screening by the
electrons will act in concert. The electrons act to screen the deuterons and vice versa. As
mentioned above, it has been observed that effective-mass in systems conforming to two-
dimensional Wigner lattices can range above 150 electron masses [34].

Locking of the Wigner lattice on atomic lattice sites for this model is provided by the
perturbing term in the full Hamiltonian. As the Wigner lattice vibrates, its individual
components are induced to remain near the lattice sites. But because the positive potentials at
the sites are finite, and in the case where there are excess electrons or holes, motion between
sites will occur. At greater energies the electron states merge into the band states and a
Hubbard-like model ensues. Quantum mechanically this is described in terms of transition
probabilities or, equivalently, by means of a hopping effect. It may also be described as
hybridization between band states and atomic states.
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Resonant Electromagnetic-Dynamics Explains the
Fleischmann-Pons Effect

Scott R. Chubb
Infinite Energy Magazine, 5023 N. 38th St., Arlington, VA 22207

Abstract
Science requires measurements. Interpreting measurements involves
recognizing patterns. How this happens is intimately related to the instruments
that are used and how the measurements are performed. One can “interpret” the
process in many different ways. Historically, however, in modern physics,
quantum mechanics has been used in situations involving “smaller” scale effects.
In this form of interpreting science, when “measurements” take place, what is
measured involves details about the measurements. A form of communication is
involved: What is “seen” depends intimately on how one “looks at it.”
Abstractly, this can be viewed in a somewhat radical way: Nature is telling us
something, but how we “interpret it” involves how we understand what Nature
“is telling us”. Just as in normal forms of communication, this kind of
communication involves being willing to accept information that is sent to us
from somewhere else. In other words, a signal is sent. If it is received,
communication takes place. If it is not, it does not take place. This paper deals
with a radical idea about a radical subject. The radical subject is what used to be
called “cold fusion”. The radical idea is that basic ideas about quantum
mechanics, and the “implicit” form of communication that is present in quantum
mechanics can explain this subject.

I Introduction
I argue that the real barrier for understanding how Cold Fusion reactions can take place,

in the Fleischmann-Pons effect (FPE), is not overcoming the “Coulomb Barrier” but involves
understanding quantum mechanics (QM). Specifically, QM does not require that the “picture”
used in conventional fusion apply. A more logical “picture” includes electromagnetism in a
time-dependent fashion and the idea that many particles can be involved. Then seemingly
impossible “aspects of the “conventional picture” become “not so impossible,” but, in fact,
“quite reasonable.” A key source of confusion is that as opposed to a situation in which
potentially reacting deuterons (d’s) are required to have such high velocity that they can be
treated as if changes in their electromagnetic interaction (EMI) are important only very near the
location of the reaction, where the conventional tunneling picture applies (involving a static
Coulomb potential), in a situation involving many charged particles, the effects of EMI can
result in time-dependent changes that can become important far from the reaction. In fact, in
what appears to be the most relevant, conventional fusion reaction (in which helium-4, in the
form of alpha particles is released), evidence exists that the conventional “Coulomb Barrier”
actually must be modified significantly[1-3] in order to incorporate time-dependent features of
the EMI that are necessary to impose the requirement that far from the reaction, the incident d’s
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must have positive Bose Exchange symmetry and have net, vanishing spin. In this paper, I
discuss a particular mechanism involving resonant electromagnetic dynamics. The associated
picture is consistent with the conditions that are present in the experiments, the known laws of
physics, and the underlying ideas suggested by Giuliano Preparata [13]. Predictions, based
upon this alternative picture, imply that particular size crystals, involving Palladium (Pd) and
particular, externally applied electromagnetic fields can be used to trigger excess heat in the
FPE.

In the next section, I provide an overview of some of the commonly believed ideas about
the “Coulomb Barrier” that have resulted in considerable confusion about the FPE. In addition,
I explain how conventional QM deals with forms of interaction in general terms and how these
can result in a counter-intuitive picture in which “collisions” can be very different than in the
conventional “Coulomb Barrier” situation because they do not have to take place “at a point.”
Instead, collisions can take place over a finite distance through an effect that is referred to as
resonance or “near resonance,” in which in a particular region of space, effectively, momentum
is conserved in a non-local fashion. In conventional solid-state physics, the associated effects
are quite well known, but a rigorous treatment of their origin has not been adequately
presented. In dealing with the cold fusion problem, I have suggested such a treatment[4, 5].

In the final section, I discuss two different pictures that involve “nearly resonant” forms
of collisions in an approximately ordered solid. The first of these is based on an approximate
model that was introduced to “overcome” perceived deficiencies involving how the “Coulomb
Barrier” frequently has been viewed in the fusion process. But this model uses a language
(time-dependent perturbation theory involving bound, ion band states) that is very different
from the conventional scattering/tunneling language that is associated with the more
conventional picture associated with the “Coulomb Barrier.” In the second picture, a
generalization of the first picture is presented, using a language that is consistent with more
general aspects of QM, based on “nearly-resonant” collisions that can take place involving the
lowest energy excitations of an ordered solid, which can include the possibility that all of the
particles in the solid can be allowed to move all-at-once rigidly. Here, for illustrative purposes,
a semi-classical limit is used to demonstrate how the associated “nearly-resonant” collisions
can lead to nuclear-scale forms of overlap. More quantitative arguments that are based on the
more general theory are presented elsewhere [1-5]. From these more general arguments, both
the earlier picture and its generalization (in the second model) can be shown to involve forms
of “nearly resonant” collisions. In the second model, external electromagnetic fields can
induce adiabatic changes in the associated scattering. In the initial picture, the energy of the
interaction is assumed to result from a uniform shift in the zero of energy. In the second model,
these forms of motion occur as a result of a uniform shift in the zero of momentum, and the
reaction involves a different final state in which changes at the boundary of the ordered region
of the solid occur through a transition in which the momentum from the change in mass (from
the d+d4He reaction) is transferred to the center of mass of the lattice as a whole. In this
situation, the change in the final state involves coupling through “nearly resonant” collisions in
which momentum is either transferred to potentially interacting helium-4 nuclei (in larger
crystals) or directly to the lattice (in smaller nm-scale crystals).
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II “The Barrier is not “the Coulomb Barrier”-- It is Quantum Mechanics

The idea that Nature is telling us something by sending us signals and requires us to
receive them involves a process of interpreting what Nature is telling us. To “understand” what
Nature is telling us requires us to “think” about the signal and what it represents. In
conventional fusion, this process is relatively simple because an obvious model exists:
conventional fusion occurs on the Sun, and it involves hot plasmas, where high velocity
hydrogen nuclei (protons, or proton-neutron pairs—d’s) can collide in a process that we also
seem to think we understand. But our understanding of this is approximate. It is based on a
theory that was created well-before details about later information involving experiments that
could be explained by a more refined understanding of QM were known. For this reason, it is
appropriate to re-examine some of the more common assumptions about the “Coulomb
Barrier,” and their relevance in our “understanding” of the FPE. With this in mind, I asked
three other people who have been paying close attention to issues related to the FPE about their
opinions about the importance of “Overcoming Coulomb Barrier.” Their opinions and my
opinion are expressed in the following:

1. Nuclear Physicists Say: You can’t overcome it[6].
2. Nuclear Physicists Say: You can’t overcome it. They seem to be wrong. But there is

no accepted theory that can account for it[7].
3. Nuclear Physicists don’t understand it. Solid State Physicists do. “Accepted theory”

involving Nuclear Physics is wrong. Ground state quantum mechanics explains it[8]
4. Time dependent quantum mechanics says it can be overcome using “conventionally

accepted” theory and this will eventually “be accepted”[9].
In fact, no one knows how relevant any of these statements actually is. With the exception of
statement 4 (which is my opinion), what I suggested in each of these opinions is not based on
an objective scientific analysis. I believe, however, there is value in including these statements
because in each case, I suggest the particular opinion has resulted from biases and perceptions
about the “Coulomb Barrier” that actually are not relevant to the FPE but reflect a more basic
source of confusion: Interpreting and understanding what Nature is telling us through QM.

In conventional physics and chemistry, the kind of radical effect that Fleischmann and
Pons observed was not at all expected, and, even after many years, statement 1 reflects the
predominant opinion of most scientists. The person who made this statement actually is very
concerned about and interested in the outcome of the “debate” that has taken place, and I
suspect that although he made this statement, as additional facts are revealed, he may change
his mind. Statement 2 reflects the opinion of an individual who has initiated a useful, scientific
dialogue and debate about the subject. He also has recognized that the lack of scientific
discourse about the subject has precluded realistic intellectual investment of time, much less,
real investment, through significant funding. Statement 3 was made by a scientist who
collaborated with me in developing the initial ideas associated with our ion band state model of
the FPE. His opinion reflects a more open-minded perspective, associated with invoking ideas
about quantum mechanics and solid-state physics. With time, I have sharpened the associated
arguments that are the basis of his opinion. Some of these ideas are the basis of statement 4.
Each view captures an important perspective. Obvious differences in opinion are implicit in
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these different statements that reflect biases about a seemingly transparent assumption: that
opinions about the “Coulomb Barrier” have relevance in understanding the FPE (and why
because of these opinions—in statements 1 and 2—it does not seem possible that the FPE can
result from nuclear reactions). An important point, associated with statements 3 and 4,
involves the potential role of QM and the idea that through QM it is possible to go beyond the
limitations of the assumptions, associated with statements 1 and 2. In fact, statements 3 and 4
are based on a model involving QM that actually makes sense in the context of what is
known[4] about palladium-deuteride (PdD). But the fact that QM might even be involved (in
the PdD situation but also, even in the conventional “Coulomb Barrier” tunneling problem)
does not seem to have been widely understood or appreciated. In particular, preconceived ideas
about the “Coulomb Barrier”, although seemingly quite relevant and “obvious” (as expressed
in statements 1 and 2), are actually quite inappropriate and quite wrong in situations in which
many particles, potentially interacting electromagnetically, can be involved. In this alternative
situation, the relevant dynamical situation can become (and probably is required to be)
considerably more complicated. The real situation, even in conventional fusion, does involve
QM, but in a very limited way, and this fact, apparently, also, has not been widely appreciated.

Fig.1: Schematic representations of two commonly-viewed pictures of the “Coulomb
Barrier;” in (a), a “classical” point-particle picture is shown. The “perceived barrier” occurs
because point particles cannot collide when infinite forces occur. This creates a “Conceptual
Barrier.” But it is not the “Coulomb Barrier” that is believed to be relevant in QM. The
“Coulomb Barrier,” which is believed to be relevant to most physicists is shown pictorially
in (b). It is based on conventional “Gamow Theory,” where because of QM, d’s are shown
as pancakes, symbolically, representing waves, not point-particles.

(a) Classical picture:

Deuteron

(b) Semi-Classical picture:
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Fig. 1 shows a schematic representation of two “perceived” pictures of the “Coulomb
Barrier.” In the first of these, each d (which is shown as a proton-neutron pair, in which each
proton appears as a point-particle lighter circle and each neutron appears as a point-particle
darker circle) is a point-particle that cannot collide with a second d because of the infinite
forces that occur classically as a result of Coulomb repulsion. Although this picture “seems to”
explain why fusion cannot occur, this isn’t true: it over-simplifies the situation. A more
“realistic

picture” is shown in (b). Here, “point-particle” d’s are replaced by pancakes, which are used to
mimic “wave-like” structures that QM requires; these structures can “collide” (their wave
functions can have overlap). This can take place, despite the fact that the classical expressions
for the energy and force become infinite. The picture in Fig.1b is more realistic. But the
associated mathematics is approximate since it requires the d’s to have high velocity.

Fig.2: Shows a pictorial representation of the how collisions occur in QM, following an analysis
that Julian Schwinger developed (which he presented during ICCF1[10]). The meanings of the
various symbols and their significance are discussed in the text.

Virtual Power =

Backward inForward in Time

Initial Finalv vFinal Initial

Collision
Change in Energy

Final State Final State Initial State

(a) Virtual Process:
Julian Schwinger 1918-1994

Collision
Change in Energy

(b) Rate = Weighted Sum of Virtual Power changes that conserve energy

Reversible: Forward Power=Backward Power

Power can be arbitrarily large or small
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Fig.2 shows a pictorial representation of how collisions occur in QM (and in quantum
field theory), based on an analysis that Julian Schwinger developed[10]. Here, in any possible
QM process, an initial state (referred to as an initial state, many-body wave function), which
can be thought of as a wave, or many waves, and, which is represented schematically as a wavy
line, initializes a collision process, that results in the occupation of a final state (associated with
a final state many-body wave function), which is also shown as a second, wavy line. (In fact,
each of these waves can involve any number of particles—many waves—conceivably.) In
particular, collisions involve changes in energy. In principle, they can take place through any
possible form of “Virtual Process.” Each “Virtual Process” is initiated through a change in the
potential energy V, resulting from a collision and leads to a scattering event in the forward
direction in time (initial state to final state) and a second scattering event involving the same
change V that occurs in the reverse direction in time (final state to initial state). Forward
reactions very often are balanced in this equation by backward reactions. When a balance
takes place, no reaction occurs (as represented in Fig.2a) by the statement forward
power=backward power (which implicitly is used in conventional thermodynamics). A net
change in power (referred to as a

“Virtual Power change” in Fig.2a) can occur that is defined by the product of the matrix
element of the forward process, ܫ݊⟩ ܽݐ݅݅ ݊݅ܨ|ࢂ݈| ܽ ⟩݈ , with the matrix element of the backward
process, ݊݅ܨ⟩ ܽ ܫ݊|ࢂ݈| ܽݐ݅݅ ⟩݈, provided energy is conserved. During ICCF1, Schwinger explicitly
cited this relationship[10], implicitly using a well-known equation (referred to as the

Fig.3: Shows a picture of John Wheeler and summarizes some of the novel
aspects associated with QM that he and Richard Feynman used throughout their
careers that have not been appreciated in “discussions” about the role of QM in
cold fusion and low energy nuclear reactions.

John Archibald Wheeler 1911-2008

In Virtual Processes:

1. Future events can affect (or resonate with) past events.

2. Particles that are far apart can interfere with each other.

3. Sum over final states means creative physics is possible.
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Lippmann-Schwinger equation) that has not been widely-appreciated in the analysis of cold
fusion theory:

Rate of reaction=


2


Initial V(H  EInitial)V Initial




2


( Initial V Final Final V Initial (E Initial  EFinal))f , (1)

where EInitial and EFinal, respectively, are the energies of the initial and final states, and the
summation includes all final states.

In fact, the terminology “collision” is a generalization of the classical concept. In Eq.1, a
more appropriate idea implicitly is presented. In the expression, any number of particles, over
any length and time scale can be involved in each virtual process. As stated in words in the
figure, collisions in QM involve a rate that is formed as a weighted sum of the possible Virtual
Power changes that can be created through virtual processes. The possible power (the Virtual
Power) resulting from any virtual process can be arbitrarily large or small, and each process, in
principle, is reversible. When the sum over final states conserves energy (which is implied
through the notation involving the delta function in Eq.1), the process can take place. Time
reversibility is broken because it is never possible to determine the change in potential, the
initial state and the final state precisely. The associated relationship (Eq. 1), in principle, is
exact. It provides a prescription for modeling new and novel effects that is considerably richer
than is possible in Gamow theory. In particular, Gamow theory, in the fusion process, assumes
a single final state is involved with a collision (consisting of three nucleons, moving away from
a third nucleon) at high velocity, except in regions in the immediate vicinity of the collision,
and that the essential dynamical changes in the potential energy (V, in Eq. 1) involve the strong
force exclusively. This picture ignores many possible final states and implicitly fails for this
reason. This occurs because Gamow theory does not include many of the possible “signals”
that QM allows. The more complete picture (outlined in Fig.2 and Eq.1), explains how many
creative possible forms of interaction (“communication”) can occur from “signals” involving
the final state (the receiver) and the transmitter (the initial state). Discussions about this
involving how light interacts with electrons, between John Wheeler and Richard Feynman,
helped Feynman to win a Nobel Prize. He won this prize by explaining how, through a subject
that is referred to as Quantum Electrodynamics (QED), electrons must be treated using QM
when they interact with light. The three ideas that I “attribute” in Fig.3 to John Wheeler (which
were well-known by him and others when he worked with Feynman) are related to the fact that
by construction, in QM, in isolation (i.e., without measurements involving collisions and
related effects), time has no preferential direction, and implicitly, “time reversal invariance”
takes place, which means it is impossible to distinguish between situations in which how
electrons and light interact evolves forward in time from situations in which their interaction
evolves backward in time.
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Fig.4: Shows a pictorial representation of each virtual collision matrix element Initial V Final (in

(a)), how (in (b)) Initial V Final is related to the current and density matrix elements,

Initial

j Final and Initial  Final through a surface region integration representation (when

energy is conserved) involving flux contributions at the boundaries of the collision region from currents

located outside (Initial

j Final ) and inside (Initial


jinside Final ) and a pictorial representation (in

(c)) of this fact. Resonance occurs (in (d)) when the flux contribution from inside the region vanishes.
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At a very early stage in the evolution of QED, John Wheeler suggested rather
extraordinary ideas (associated with the words in Fig. 3), including this concept of “time
reversal invariance” and other “counter-intuitive” features of QM, in which: 1. “Particles” that
are located far apart can “interfere” with each other (i.e., the wave-like characteristics of
different particles that are far apart can affect each other in measurements); 2. Since it is never
possible to identify a particular final state with certainty, assumptions about the behavior of the
final state can be used to postulate new and novel physical effects; and (possibly the most novel
idea) 3. How light propagates in the future can “affect” (or resonate with) how it has
propagated in the past. This kind of logic is a starting point for believing the “real barrier” to
our understanding of cold fusion probably is not only understanding “the Coulomb Barrier,”
but it involves using a more complete picture of what is possible in QM.

III Resonant and Near-Resonant Interactions

A problem, involving the possibility that light being transmitted and received in the
future, in the absence of collisions, could alter how it was transmitted and received in the past
was suggested by Wheeler to his (at the time) young, graduate student, Richard Feynman. This
idea required that Feynman think in basic terms about how light might interact with matter at
its most fundamental level. Intuitively, one might view this problem in a paradoxical way:
That what happens in the future could affect the past. In fact, as opposed to viewing this
problem in this particular way, an alternative way of looking at it involves an important
assumption, associated with how quantum mechanics works: In the absence of collisions, it is
impossible to “know” anything at a fundamental level, and (possibly more significantly) that
how natural forms of harmony (or resonance) might exist in which it is simply impossible to
distinguish between the past and future, or even in situations in which “seemingly natural”
boundaries are present that can prevent unexpected collisions from taking place. In suggesting
this seemingly odd and bizarre idea, Wheeler asked Feynman to address a fascinating question
that might be impossible to answer: If a tree falls in a forest and there quite literally is no one
around to hear it, does the tree make a sound. Possibly equally remarkable is the conclusion,
based on what is known about the existing theory of electromagnetism, that he suggested, is
that a sound actually might not be created. In doing this, John Wheeler and Richard Feynman
“re-invented” the kinds of ideas associated with how QM works, and the forms of harmony and
resonance that I just mentioned, which are not widely appreciated, associated with “time
reversal invariance” and causality that (I think) have direct bearing on questions related to cold
fusion.

In particular, Wheeler and Feynman made use of ideas related to what we know and can
never know about electrodynamics, and the fact that precise solutions of the associated
equations are allowed to become non-local both in time and space. By invoking this, they
postulated the somewhat “spooky” idea that for radiation to ever be transmitted, it is necessary
to have both a “well-defined” receiver and transmitter. Wheeler suggested that if this does not
take place, no signal is ever transmitted. Implicitly, in order to account for how the associated
signal is transmitted, Feynman invoked a form of the effect that I have referred to as resonance
or harmony. When this kind of effect is approximate, a condition that I will refer to as “near
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resonance” can take place, in which “collisions” can take place, but their magnitude and
duration can be vanishing-ly small. In both situations, as opposed to a “conventional effect” (in
which how light and electrons interact only involves how light is emitted in the future),
Feynman and Wheeler thought about a very different effect, involving conditions in which how
light is emitted involves a situation in which how it interacts with electrons in the future can
affect how it has interacted with electrons in the past. They suggested how this occurs
“appears” to involve a situation in which what happens in the future “in anticipation” of what
will take place can affect what has taken place in the past. This idea is entirely non-classical, in
the “real universe,” and it also “appears” to violate causality. (But, as stated above, because in
QM, by construction, in the absence of collisions, time has no preferential direction, such a
violation does not take place.)

In Fig. 4(a), I show a pictorial representation of the overlap between initial and final
states using wavy lines, and its rate of change with respect to time (in the interaction
picture[11]), using a wavy line that begins and ends with arrows. Each virtual collision matrix
element, Initial V Final (in Fig.4a) that is used to define the virtual power (Eq. 1), can be

related (as shown in Fig.4b) to the (Schroedinger picture[11]) “off-diagonal” many-particle
current (associated with all, neutral or charged particles) and density (associated with the same

particles) matrix elements[11], Initial

j Final and Initial  Final , through an integral

representation that reduces to a simpler (surface region integration) representation, when
energy is conserved, involving flux contributions at the boundaries of the collision region from

currents located outside (Initial

j Final ) and inside (Initial


jinside Final ). The condition

associated with future and past forms of scattering being in harmony with each other (as in
Fig.3) occurs when particle number and energy are conserved, throughout space. This implicit
assumption is illustrated through the arrow, from the first term in the integral equation, shown
in Fig.4b, to the symbols and words, associated with the wording, “=0 When energy is
conserved.” In Fig.4c, a pictorial representation is presented that shows how this can take place.

The resonant condition (shown in Fig.4d) occurs when the contribution from inside the

region vanishes. Then, Initial V Final depends only on contributions Initial

j Final that

occur at the boundaries of the region. Effectively, when this occurs, the “collision” process can
become non-local, and through near resonant conditions that “almost mimic” resonance, non-
local forms of collisions can occur that can result in gradual increases in momentum. In
particular, as opposed to a situation in which particles “collide” in the interior of the collision
region, in perfectly resonant situations all of the particles that are external to it pass through it,
as if the region is transparent. In near resonant situations, all of the particles either pass
through it, or some of them may remain near the boundary or be reflected, in such a way that
momentum is transferred non-locally. In both situations, the changes in potential only occur
either at the boundaries of the region or in regions external to it.
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IV How Resonant Electromagnetic-Dynamics Explains the Fleischmann-Pons Effect

Implicitly, in an approximately ordered solid, a form of “Galilean relativity” exists,
associated with the fact that in the limit in which there are no collisions, it is impossible to tell
whether or not the “ordered regions” in the solid are in motion or at rest. This can have
especially interesting consequences when collisions are weak because their contributions in Eq.
1 can be stifled as a result of periodic order. The associated effect is a specific example of the
more general phenomenon, discussed in the last section: near-resonance and nearly resonant
collisions. This occurs when contributions from many virtual collision matrix elements (many
values of Initial V Final in Eq. 1) become very small in a particular region of space. In

particular, perfect resonance occurs when energy is conserved and the contribution to the “flux”

(as in Fig. 4b) from the many-particle current matrix elements, Initial

j(r) Final , over the

boundary of the region, from the interior portion of the integral (as in Fig.4d) vanishes. Since
energy is conserved in Eq. 1, in this kind of situation, the total contribution from collisions in
the interior vanish (so in this region Initial V Final  0 ), and with respect to

Initial and Final , the total Hamiltonian (H in Eq. 1) can be viewed as being a self-adjoint

(Hermitean) operator in this region.

Formally, as a consequence, perfect resonance can be used to justify the approximate
boundary conditions associated with the single-particle, energy band theory, developed by
Bloch, which is the basis of heat and charge transport in solids, with the understanding that the
theory actually can be applied even in situations in which the crystal lattice that is used has
finite extent, provided the energies of the various states that are used are all very close to each
other in value. As I have pointed out elsewhere[1-5] the associated conditions are guaranteed
to apply to the full many-body Hamiltonian when the initial and final states involve many
particles, provided the energies of the states involve the ground state, and the lowest-lying
excitations, which, by construction, are all required to be related to each other through rigid
Galilean transformations, in which all of the “particles” are allowed to move at once, rigidly,
without the separation between any particle and the remaining particles being altered. As a
consequence, as opposed to justifying conventional band theory, using stationary, bound,
eigenstates of an approximate single-particle Hamiltonian, the theory can be viewed as a near-
resonance limit, involving the full Hamiltonian, as it applies to a periodically ordered, finite
lattice that is allowed to move rigidly within the interior of a solid, and the associated
eigenstates are wave function “resonant states” that preserve periodic order. Because, in fact, it
is never possible to determine the boundary of a solid[4,5], formally, the associated picture can
be viewed as a definition. This alternative perspective justifies, formally, the implications of
the initial ion band state model model[12], in which an approximate “Fermi Golden” rule
fusion rate calculation and the possibility of overcoming the “Coulomb Barrier” was inferred
from approximate eigenstates, derived from a two-body d-d wave function, that possesses
Bloch symmetry (similar to the comparable symmetry that occurs when non-interacting d’s
occupy ion band states[12] in both its dependence on its center-of-mass and relative d-d
separation variables). In this model, the Fermi Golden rule is used to evaluate the fusion
reaction rate, using initial and final states, that only change in regions (which are located at the
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interior boundaries of the ordered lattice) where nuclear overlap takes place, based on the
assumption that in both the initial and final states, the same wave function applies in regions
where overlap does not take place but as the separation variable either vanishes or its
magnitude approaches the magnitude of a Bravais Lattice vector, overlap becomes possible by
allowing the change in momentum to become infinite. When the d-concentration is sufficiently
small, this assumed, asymptotic, energy-minimizing solution satisfies a resonant condition,
while the Fermi Golden Rule rate expression occurs through nearly-resonant forms of
collisions, associated with small (infinitesimal) perturbations, in the zero of energy of the
electromagnetic potential, defined by Eq. 1, in regions where nuclear overlap can occur, both in
interior and external regions of the lattice. This initial calculation of fusion rate is justified only
when the energy per unit cell is on the order of the smallest (optical) phonon energies (~20
meV) which means the lattice must have 23.8 MeV/0.02 eV~109 unit cells. However, a
considerably smaller lattice size is possible in the presence of very weak externally applied
forces. In this case an alternative model, associated with near resonance can take place, in
which the zero of momentum adiabatically changes, without exciting the system. This can
occur provided the effective change in virtual power associated with the process is sufficiently

small. In particular, as a function of time, when an external field 

E is applied, nearly resonant

fluctuations in the center of mass momentum can take place that can increase in magnitude,
with time. When the complete many-body expression is included (through Eq. 1, based on a
generalization of multiple scattering theory[1-4]), as the available momentum builds up, virtual
collisions can couple resonantly between the lowest lying excitations of the solid when the

product of the force (e

E ) on each d, associated with “a collision,” with the time t that is

involved (which, in one dimension, for example defines a particular momentum p(t)  e

Et )

obeys a matching condition (in which, for example, again, in one-dimension, the associated

deBroglie wavelength deBroglie 
h

p(t)


N

n
a; h=Planck’s constant, n = integerN, 2N=number

of lattice sites). In the many-body generalization[4,5], whenever this condition occurs once, it
can occur 2N times. In the simplest (one-dimensional) limit, N=n, 2NdeBroglie  a , and as p(t)

increases in time, deBroglie can approach nuclear dimension. The apparent “simplicity” of this

picture involves relating the microscopic physics to the semi-classical limit involving how light
interacts with matter. Here, the underlying idea that coherent oscillations of charge that
Giuliano Preparata [13] suggested could be important, in the long-wave limit, in the associated
interaction is absolutely correct. His observation about this is truly important.
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Abstract
The interface theory of cold fusion is a variant of Ion Band State (IBS) Theory.1

It models Bloch symmetry deuterons in a 2-dimensional metal lattice instead of
the 3-dimensional metal lattice first used. Both IBS variants recognize that the
required lattice symmetry has limited extent, with the reactive deuterons being
bound inside a closed volume like a box. The reactive deuterons are confined
within classical turning point boundaries, while within the box their density
distributions are modulated by a lattice array potential. Strictly speaking, the
IBS fusion theory is a many-body theory. Nuclear dd fusion is one of several
LENR processes. Some LENR processes do not require many-body ions and
support room temperature nuclear reactions using light ions in single-particle
Bloch geometry. For example, the decay of metastable single-body Bloch-
function 8Be seems to be the source of MeV alphas in Oriani's light/heavy water
electrolysis, and in several co-deposition electrolysis CR39 studies, as described
in ICCF14 Abstracts.2 The Oriani MeV alphas are side products of both light
water and heavy water electrolysis, using either Pd or Ni cathodes, as shown in
highly repeatable tests. Bloch 8Be is likely the nuclearly reactive component in
the final step of the Iwamura et al. transmutation studies.3 Despite differences,
all LENR systems seem to share some essential physics.

The essential feature that seems to be shared by all LENR processes is a need to produce
coherently partitioned light "atoms", where coherent partitioning means the type of partitioning
that occurs when a low density Bose condensate becomes partitioned in an optical lattice.4 As
applied to LENR, a coherently partitioned atom means a coherently partitioned ion neutralized
by coherently partitioned electron(s). Superfluid behavior marks the presence of coherently
partitioned atoms in Bose condensates in lattices. To behave as a superfluid, Bose condensate
atoms must occupy a lattice that consists of a communicating network of shallow potential
wells that are separated by potential barriers low enough to allow tunneling. Also, the number
of Bose atoms in the lattice must be smaller than the number of potential wells, or must be a
non-integer times the number of potential wells. The atoms must be indistinguishable in the
Pauli sense, i.e., when 2 "indistinguishable" particles collide and move apart, neither of the
receding particles can be identified as one of the incident particles. Indistinguishable particle
interactions must be modeled using 2-particle wave functions that express coordinate exchange
symmetry.

The challenge to LENR experimenters is to create a nuclear reactive environment. In
practice, this means to create conditions involving a metal solid that causes coherent
partitioning of a feedstock atom. This means that the configuration of the atom must become
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describable by a wave function with many equivalent centers. One must create "many-centers"
nuclei neutralized by many-centers electrons. A particle is best thought of as a "quantum-of-
mass". A quantum of electron mass, if localized, is called an electron; if delocalized in a Bloch
configuration it can be called a quasiparticle electron. If 2 quasiparticles interact, their
interaction cannot be modeled using an expansion of wave functions around a single center-of-
mass. When the interaction is nuclear, the nuclear physics cannot be calculated using a sum
over wave-function spherical harmonics about a center-of-mass. This means that quasiparticle-
quasiparticle nuclear interactions cannot be modeled using the standard center-of-mass
expansions of classical nuclear physics. This incompatibility is a major factor in the nuclear
physics community's failure to understand cold fusion. It is also the reason that dd cold fusion
reactions do not result in emission of energetic particles or -rays.

Providing a nuclearly active environment for reactive deuterons means the same as providing
an environment that catalyzes a geometric change in a "D-atom" from a single-center geometry
to a many-centers geometry. One strategy is to place deuterons inside a solid which has a very
stable and regular lattice symmetry. The first geometry that seems to have catalyzed cold fusion
is a 3-dimensional fcc Pd metal lattice with each of its octahedral sites occupied by an
interstitial deuteron. In Fleischman-Pons cold fusion, overpotential electrolysis of a D2O

electrolyte deposits deuterons onto a Pd metal cathode to create this environment. Further
added deuterons then occupy a communicating network of unit cells containing 2 shallow
tetrahedral sites and the periphery of one octahedral site. This paper describes a second
strategy. It argues that an interface between an ionic crystal and sputtered Pd metal can provide
a 2-dimensional many-centers geometry using equilibrium chemistry. The ZrO2,nanoPd

catalyst developed at Tohoku U. seems to be of this type.6

This paper applies IBS theory to many-body interface deuterons located between a ZrO2

crystal face and a Pd nanocrystal. Photomicrographs of ZrO2,nanoPd catalyst show fragmented

Pd nanocrystals embedded in larger ZrO2 crystals. At some of the contact surfaces the Pd metal

is assumed to have formed an epitaxy fit onto the ZrO2 substrate.7 Epitaxy makes an unusually

stable, low energy first layer of Pd on the ionic crystal surface. Above the epitaxy Pd layer are
transition layers containing interstitial deuterons and vacancies, and above the transition layers
is fcc cubic Pd metal. The interface + transition layer constitutes an energy minimizing
configuration, and incidentally provides a major reservoir for non-reactive absorbed deuterium.

The stability of the epitaxy Pd layer on a ZrO2 crystal face is caused by the large negative

Gibbs free energy of ZrO2, and the relative malleability of nanoPd. The stability of the interface

is not damaged by its hosting an extremely thin layer or sheet of D
+

quasiparticles (D
+

Bloch

ions) between the metal oxide and the epitaxial metal layer. The D
+

quasiparticle sheet is
extremely thin and resides harmlessly between the epitaxy Pd layer and the ZrO2 crystal.

Normal diffusing deuterons become D
+

Bloch ions when they encounter this strictly ordered

environment. When a D
+

Bloch ion transitions to quasiparticle geometry, it becomes neutralized
by an electron quasiparticle, which forces the epitaxy layer to move away from the ZrO2, but

only by about a 0.001 fraction of a metal layer. The resulting layering is: 1) ZrO2 crystal, 2)
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D
+

Bloch "atom" sublayer, 3) epitaxy Pd layer, 4) transitional Pd layers with interstitial D atoms,
5) fcc Pd nanocrystal.

IBS theory as applied to ZrO2 + nanoPd interfaces preserves 2-dimensional periodic

symmetry. The modeling uses stationary state quantum mechanics and many-body physics. The
physics could be called “semi-classical” quantum orbital physics. In atom physics, the word
"orbital" does not imply electrons in planetary orbits around a nucleus. Instead, it implies a set
of negatively-charged electron wave functions pulled as densely as possible on top of a
positively charged nucleus. It is a mistake to think of an atom as being mostly empty space.
Instead, it is jam packed with electron charge-density matter. An atom appears as empty space
only to a high energy impacting nucleus or -ray. Electron density is limited by Pauli exclusion.
Atom structure is determined by system energy minimization.

Atom quantum mechanics teaches us about s, p, d, ….wave function states. Each wave
function describes an electron density distribution. The distribution is a matter field, i.e., has a
value at every point is space. The electrons in H, He, Li, and Be are all in s-states. Each s-
electron has spherical symmetry. The boron atom adds a non-spherical p-electron. The p-
electron is coherently partitioned between two equal volume potential wells. Half the p-
electron’s density is in one potential well, half is in the other, with zero electron density
centered on the boron nucleus where the 2 potential wells touch. One must sum over both
potential wells to recover the electron. In other words, boron's p-electron displays coherent
partitioning behavior.

Figure 1. Density distribution of p-electron orbital in boron. Calculation by D. T. Cromer.

In IBS fusion Bloch deuterons, like p-electrons, are coherently partitioned. The IBS Bloch
deuterons must be coherently partitioned into 1000 or more potential wells to avoid a Coulomb
barrier. Energy minimization calculations show that a deuteron many-body wave function with
more than 1000 potential wells will have no Coulomb barrier. Instead, the wave function
expresses coordinate exchange symmetry and wave function overlap.

Figure 2. D2 Molecule. D+
Bloch Quasiparticle(s) inside an Interface
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The reason that energetic particles and -rays do not occur in cold fusion is that they cannot
exist as coherently partitioned entities at lattice spacing. Their deBroglie wavelengths are too
small. Therefore they cannot be part of the initial and final state wave functions, as required for
reaction. The dd-fusion transitions are restricted to transitions that preserve spin and nuclear
angular momentum. Unlike hot fusion, the likely dd-fusion initial configuration is a spin-zero

pair or pairing, which then undergoes a 0
+

to 0
+

density-distribution changing transition.

Quasiparticle
4
He can exist in either (pn,pn) or (pp,nn) nuclear geometry. The initial spin-

zero D
+

Bloch pairing has (pn,pn) geometry, which is the same as (d,d) geometry. The first
transition collapses the wave function from potential well dimensions to nucleus dimensions,

creating a metastable excited
4
He

++
Bloch nucleus. A minimal transfer of energy occurs during

this step. Transfer of the remaining 23.8 MeV to the metal lattice requires a cascade of
transitions between sequential metastable states, with rates determined by the Fermi Golden
Rule.

Figure 3. Energy level diagram for d+d and pp+nn 4He in single-center and Bloch geometry.

When a diffusing deuteron transitions to Bloch geometry configuration within a ZrO2 +

nanoPd interface, energy minimization requires an accompanying Bloch electron. If Nwell =
1000, Pauli exclusion requires the Pd epitaxy metal layer to jump back by 0.001 metal layer

thickness. The jump is a momentum shock that pushes ZrO2 and nanoPd crystallite apart,
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sometimes stimulating an irreversible energy transfer from an initial state Bloch deuteron
many-body system to a hosting metal lattice. Even a small energy transfer makes the fusion
reaction irreversible.

The partitioned electrostatic force between two quasiparticle deuterons decreases with Nwell.

Therefore work done to bring deuterons into contact decreases with Nwell. [In each well

F12=e
2
/r12

2
Nwell

2
. Summing over potential wells gives F12=e

2
/r12

2
Nwell.] Therefore, a

coherently partitioned
4
HeBloch product is more stable at higher Nwell. This lowering of nucleus

ground state energy makes the flakelike nuclear product seek larger Nwell.
2,3

The wave function boundary within which a D
+

many-body system resides is subject to

quantum fluctuations. Boundary fluctuations which change bound volume also change Nwell.

Fluctuations in Nwell cause the energy of (pn,pn)
4
He

++
Bloch to fluctuate, which can "scan" the

energy of a nuclear configuration wave function state across the energy of the dd pairing initial
state. This phenomenon creates a transient Li-Feshbach energy-match resonance. Scanning
across a Feshbach resonance causes geometric change accompanied by a small transfer of
momentum + energy to the hosting lattice. A small energy transfer makes the reaction
irreversible.

As shown in the energy level chart, quasiparticle
4
He exists in both (pn,pn) and (pp,nn)

nuclear geometries. The initial spin-zero D
+

Bloch pairing has (pn,pn) geometry. The first
transition collapses the wave function from potential well dimensions to nucleus dimensions,

creating a metastable excited
4
He

++
Bloch* nucleus. Transfer of 23.8 MeV to metal lattice

requires a cascade of transitions between metastable states, with rates determined by the Fermi
Golden Rule.

The interface model suggests that the following transitions are supported by 2-dimensional
symmetry LENR. The asterisk designates a metastable excited nuclear state. Unbalanced
charges reflect electron quasiparticle configuration changes.

1) D
+

Bloch + D
+

Bloch 
4
He

++
Bloch* dd fusion reaction

2) D
+

Bloch +
6
Li

+


8
Be

++
Bloch* Oriani heavy water reaction

3) H
+

Bloch +
7
Li

+


8
Be

++
Bloch* Oriani light water reaction

4)
8
Be

++
Bloch* 

8
Be

++*
degradation of lattice symmetry creates a preferred mass center

5)
8
Be

++*


4
He

++
+

4
He

++
fission creates 2 alphas in CR39

6)
4
He

++
Bloch +

4
He

++
Bloch 

8
Be

++
Bloch* second step in Iwamura reactions

7)
8
Be

++
Bloch +

133
Cs

+


141
Pr Iwamura alpha addition transmutation step

The synthesis reactions are promoted by scanned Li-Feshbach resonances. Reactions 1 and 6

occur in co-deposition experiments. Premature separation of
8
Be

++
Bloch* from its hosting

interface leads to a flakelike neutral atom
8
BeBloch*, which can diffuse through liquids and

solids. Reaction 7 requires a cascade of energy transfers to a hosting lattice. Some of the

available excited nuclear states of
8
Be* are shown in an energy level chart provided by Heyde.8
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Abstract
A lattice model of nuclear structure that is isomorphic with the conventional
independent-particle model (IPM) has previously been shown to predict the
asymmetrical fragments produced by the thermal fission of the actinides. The
same model can be used to predict the transmutation products found on
palladium cathodes following electrolysis, as reported by Mizuno [1]. It is
concluded that the substructure provided by the lattice may be a crucial addition
to conventional nuclear structure theory in order to explain the nuclear
transmutations in both thermal fission and “cold fusion”.

Introduction
Several decades ago, various nucleon lattice structures were examined theoretically in the

search for stable, condensed configurations of nucleons, possibly present in “neutron stars” [2].
Amidst such research, several lattice models of nuclei at normal nuclear densities [e.g., 3, 4]
were developed and shown to exhibit the properties that are normally described using the
conventional (shell, liquid-drop, cluster, etc.) models of nuclear structure theory. The lattice
models have proved most useful in predicting the multifragmentation products of heavy-ion
experiments [3, 5, 6] – an area where conventional models are inapplicable. Notable among
such theoretical work was the quantitative explanation of the high-energy fragmentation of Xe
and Kr nuclei using an FCC lattice [5] and the parameter-free explanation [7, 8] of the
asymmetrical fragments produced in the thermal fission of uranium and plutonium: “the
perennial puzzle of nuclear physics” [9].

The present study was undertaken to examine the use of the FCC lattice model for explaining
the transmutation products that have been reported in low-energy “cold fusion” experiments.
Mizuno [1] found not only deviations from the natural abundance of Pd isotopes on Pd
cathodes, but also deposits of various light elements on the cathode surface. Those results are
undisputed as empirical studies, but questions remain concerning the physical mechanisms.
Here I apply the same lattice-fission technique that explains the asymmetrical fission of
uranium [7, 8] to the break-up of the Pd isotopes, again without the use of model parameters to
produce the results.
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The Lattice Model
Central to an understanding of the lattice model itself is a mathematical identity between the

quantum mechanical description of nuclear quantum states (summarized by the quantum
numbers, n, j, m, s and i, that are used in the Schrodinger wave-equation) and a specific lattice
structure [4, 8]. Specifically, in the conventional description of nuclear states, each nucleon is
presumed to be in an energetic state specified by its unique set of quantum numbers. The
description of nucleon states is analogous to (although, in detail, somewhat different from) the
quantum mechanical states of the electrons in electron orbitals and described by similar
quantum numbers. The motivation underlying the lattice model is the fact that a specific lattice
structure that reproduces all of the nucleon energy states of the so-called independent-particle
(~shell) model. That same lattice (an antiferromagnetic face-centered-cubic [FCC] lattice with
isospin layering) has been independently shown to be the lowest-energy condensed state of
nuclear matter (N=Z) [11]. The significance of the isomorphism between the lattice and
quantum mechanics lies in the fact that, if the conventional IPM structure of a nucleus is
known, then the 3D lattice positions of all its nucleons can be deduced directly from Eqs. 1-5
(and vice versa, starting with occupied lattice sites and deducing its IPM state, Eqs. 6-8).

n = (|x| + |y| + |z| - 3) / 2 Eq. 1 i = ((-1)^(z-1)) / 2 Eq. 5
j = (|x| + |y| -1) / 2 Eq. 2 x = |2m|(-1)(m+1/2) Eq. 6
m = |x| / 2 Eq. 3 y = (2j+1-|x|)^(i+j+m+1/2) Eq. 7
s = ((-1)^(x-1)) / 2 Eq. 4 z = (2n+3-|x|-|y|)^(i+n-j-1) Eq. 8

where x, y and z are all odd-integers defining FCC lattice coordinates. Full details of the lattice
structure and its application to the unresolved problems in nuclear theory are available
elsewhere [8]. Suffice it to say that the n-shells of the harmonic oscillator are literally shells in
the lattice (Fig. 1), and all of the j-, m-, s- and i-subshells of the IPM model are defined in terms
of lattice symmetries. It bears emphasis that the occupancies of all of the shells and subshells in
the lattice model are identical to those in the IPM model – from which the shell model is
derived. In other words, the FCC lattice is a geometrical analog of the quantal regularities of
the Schrodinger equation. It therefore provides a natural inroad to questions concerning nuclear
substructure without the need for ad hoc postulates concerning nucleon-clustering or dynamics
(i.e., “model” parameters that are not derived from quantum mechanics).

Figure 1. The n-shells in the lattice built from a central tetrahedron show the same occupancy as the
harmonic oscillator [4, 9]: 2He4, 8O

16, 20Ca40, 40Zr80, 70Yt140, 112Xx224, 168Xx336.
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Given the well-established validity of the IPM (~shell model) description of nucleon states, a
unique lattice structure for any combination of N and Z is implied (Eqs. 1~8) – so that the
lattice structure itself can be examined in terms of its fragmentation dynamics.

Fission of the Actinides
The break-up of a mini-lattice (A~240) is favored along those lattice planes where the

number of interfragment 2-body interactions is low and simultaneously the interfragment
Coulomb effect is high [7]. These are competing tendencies: asymmetrical fission is favored by
the small number of nucleon-nucleon interactions binding small fragments to the larger parent
nucleus, whereas the symmetrical (~1:1) split of the parent nucleus is favored when equal
numbers of proton charges are in both daughter fragments. Note that the prediction of
symmetrical fission fragments is the classic deficiency of the liquid-drop model (LDM)
explanation of thermal fission. Without an “asymmetry parameter” – introduced explicitly to
enhance asymmetrical fragmentation, the presumed liquid-like interior of large nuclei in the
LDM inevitably predicts symmetrical fission – contrary to all findings on low-energy fission of
the actinides. Shell model theorists have sought to introduce nuclear substructure (i.e.,
asymmetry) via the stability of “magic” numbers of protons and neutrons – and that view is the
qualitative explanation of asymmetrical fission in most textbooks today. To the contrary,
however, Strutinsky et al., who worked explicitly on this problem, have noted that the
manipulations of the nuclear potential well needed to produce asymmetric fission have “little to
do with the magicity of spherical fragments” [11] and the magic numbers 28 and 50 among the
final fragments do not explain – qualitatively or quantitatively – the known fragment
asymmetries. In contrast, the lattice model contains substructure inherent to the lattice itself.
Using the default FCC structures for the uranium and plutonium isotopes, calculation of the
interfragment binding along lattice planes, together with interfragment Coulomb effects,
already shows the predominance of asymmetrical fission fragments (~3:2) (Fig. 2).

Figure 2. The parameter-less prediction of asymmetrical fragments in the thermal fission of the actinides
using the lattice model [7, 8]. The experimental data are shown by the solid lines (experimental error lies

within the width of the lines). Not only is the asymmetry of the fragments unexplained in conventional
theory (known since 1938), but there is real substructure in the fragments that survives the fission process

and cannot be explained by the LDM or shell model.
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Transmutation of Palladium
Among the most dramatic results on the transmutation of deuterium-loaded palladium are

those reported by Mizuno [1]. As experimentalists, they have been concerned chiefly with the
measurement of heat and reaction products, and have reported not only changes in the
abundance of various Pd isotopes, but also the deposition of various light- and medium-size
elements on the surface of the Pd cathodes. They found that: (i) Prior to the experiment, the
measured abundances of Pd isotopes were virtually identical to the known natural abundances
(Table 1, Column B). (ii) Subsequent to electrolysis, there were significant changes in the
relative abundances (Column C), suggestive of nuclear transmutation at the surface of the
electrode, with (iii) gradually smaller changes in the natural abundances as measurements
proceeded from the surface to 30,000 Angstroms into the depth of the cathode. Issues of heat
production aside, these are profoundly interesting experimental findings.

Table 1: Experimental and Theoretical Changes in Palladium Isotopes Following
Electrolysis

EXPERIMENT SIMULATION .
Isotope % Abundance Mizuno Data % Change Initial No. Loss Final No. % Loss %
Abundance

Pd
102

1.0% 4% +3.0% 1,000 600 400 60% 3.8%
Pd

104
11.0% 17% +6.0% 11,000 9,190 1,810 84% 17.1%

Pd
105

22.2% 20% -2.2% 22,200 20,080 2,120 90% 20.0%
Pd

106
27.3% 21% -6.3% 27,300 25,070 2,230 92% 21.0%

Pd
108

26.7% 21% -5.7% 26,700 24,470 2,230 92% 21.0%
Pd

110
11.8% 17% +5.2% 11,800 9,990 1,810 85% 17.1%

Total 100.0% 100% 0.0% 100,000 89,400 10,600 89% 100.0%

A B C D E F G H I

The percentage changes in the abundance of Pd isotopes (Column D) do not suggest any
obvious regularity in the transmutation process, but a simple simulation indicates that
essentially all of the Pd isotopes were equally involved in the transmutation process. That is,
assuming that measurements of the cathode surface were made on, say, 100,000 Pd nuclei
(Column E), the “loss” of 600, 9190, 20080, 25070, 24470 and 9990 of, respectively, the Pd102,
Pd104, Pd105, Pd106, Pd108 and Pd110 isotopes results in percentages (Column I) virtually identical
to those reported by Mizuno (Column C). What is of interest about these values is that they
indicate that (with the exception of Pd102, that accounts for only 1% of the natural abundance)
all of the Pd isotopes were involved in nuclear reactions at approximately equal rates (84~92%,
Column H). In other words, if transmutation of Pd is the source of heat energy in cold fusion
experiments, then it is not the case that one or a few unusual isotopes are responsible for the
effects, in so far as similar percentage decreases of all isotopes were involved. Clearly, this
simulation does not indicate how deuterium is able to overcome the Coulomb barrier and enter
the Pd nucleus [12], but it does show that, if some such mechanism is at work, the seemingly
irregular changes in Pd isotopic abundances (Column D) are a consequence of similar
percentage depletions in all isotopes (Column H).
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The next question is, therefore, if a constant percentage of surface Pd isotopes were
transmuted, what were they transmuted to?

Palladium Fission Fragments
Simulation of the fission of palladium was carried out on each of the six stable Pd isotopes

using the lattice model [4, 7, 8,]. The nucleon build-up process in the model is given by Eqs.
1~4, with the assignment of equivalent “valence” nucleon positions determined solely by the
maximization of nearest-neighbor interactions. In other words, 46 protons and 56~64 neutrons
were placed at lattice sites, such that the final nucleus had (i) maximal nearest-neighbor
binding, (ii) minimal Coulomb repulsion, and (iii) a total J-value (calculated from the sum of
nucleon j-values) as experimentally known. A deuteron was then added at random to surface
lattice sites of each nucleus. Finally, scission of the Z=47, N=57~65 system was simulated
along 17 lattice planes cutting through or parallel to the origin of the coordinate system, and
statistics collected. For each fissioning nucleus, the total number of “bonds” crossing the
fission-plane was counted and the total Coulomb repulsion between the fragments calculated.
Assuming an average nearest-neighbor binding energy of ~2.77 MeV (giving a total binding
energy of the Pd isotopes within 1% of experimental values) and subtracting the Coulomb
effect between the fragments, the four lowest-energy fission events per nucleus were
calculated. The final steps in the simulation were (i) adjustment of the percentages of fragments
using the natural abundances of Pd isotopes and then (ii) collation of the fission fragments per
Pd isotope. The entire fission simulation is similar to that already reported concerning the
actinides [7, 8], and can be easily reproduced using the NVS freeware (Windows and Mac
versions) available at: www.res.kutc.kansai-u.ac.jp/~cook.

Results
The binding energy of the Pd isotopes was calculated from the total number of nearest-

neighbor “bonds” in the lattice structure for a given number of Z and N, assuming a binding
energy of 2.77 MeV/bond (ignoring spin and isospin effects) minus the Coulomb effect. By
then calculating the total binding energy across each scission plane minus the Coulomb
repulsion between the protons in each fragment, the energy required to induce fission was
found to be 3.12~8.66 MeV, depending on the isotope. The fragments produced by splitting the
Pd isotope along the low-energy planes contained 46~60 nucleons and 22~26 protons. In other
words, fission of the Z=47, N=57~65 system was essentially symmetrical with two daughter
fragments of approximately the same mass. Generally, only a few scission planes per isotope
had fission energies below 10 MeV, but if fission events requiring up to 15 MeV are also
included, then fragments with atomic number 14~33 and mass number 34~73 were found.
Typical fission lattice-planes through a Pd isotope are illustrated in Figure 3. Qualitatively, the
approximate spectrum of deposits on the Pd cathode reported by Mizuno [1] was reproduced by
the lattice model. A quantitative study is in progress.
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Figure 3. Examples of high (left) and low (right) probability lattice scission planes in Pd110. Note that the
FCC lattice structures represent individual nuclei (protons are light spheres, neutrons are dark spheres),

totally unrelated to the FCC (atomic) structure of the palladium cathode itself.

Conclusion
Conventional nuclear structure theorists are understandably reluctant to postulate new

physical mechanisms to account for the transmutation results reported by Mizuno and others.
Nevertheless, the excess heat found in many experimental “cold fusion” set-ups is strongly
suggestive of a nuclear origin – and that suggestion alone implies that there are yet imperfectly
understood nuclear phenomena at work. In fact, the asymmetrical fragmentation of U235 and all
of the other actinides that undergo thermal fission is one of the oldest “mysteries” in nuclear
physics. I suggest that both the mystery of asymmetric fission of uranium and the mystery of
deuterium-induced transmutation of Pd can be solved by regarding the nucleus itself as a mini-
lattice. Assuming a yet-uncertain mechanism for inducing the fission of Pd nuclei [12], the
substructure implicit to the FCC lattice representation of nuclear quantal symmetries may
explain transmutation results essentially without any modification to the conventional
independent-particle (~shell) model of nuclear structure.
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Abstract
In the CF-LENR field (Cold Fusion and Low Energy Nuclear reactions) many
experimental results are available: unexplained energy production, presence of
unusual patterns of classical fusion reaction products, isotopic composition
variations, sporadic emission of nuclear radiations (α, β and γ)… These effects 
are not always observed, for similar experimental conditions. Should a
fundamental reason exist for these effects to occur, funding would be justified,
to make them repeatable and more intense. In this article, a possible fundamental
explanation of the phenomenon is described, together with the experimental plan
to assess it.

Introduction
One of the main conceptual problems to be addressed (and solved) in the field of CF-LENR

is: “how can huge potential barriers be overcome” (some 0.3 MeV in the case of d/d fusion and
30 MeV in the case of d/Pd nuclear reactions). Part of the answer is probably to be found in
specificities of deuterons behavior in a lattice (deuteron/phonon interaction, resonant
electromagnetic-dynamics…), that could increase the otherwise very low probability of
reaction. should an attractive (and yet undiscovered) potential exist, with a pico-meter range
and a coupling constant in the order of magnitude of the EM coupling constant, these
probabilities could be considerably increased and result in macroscopic effects, potentially
useful for technical applications. The experimental approach described below, aims at
unveiling and characterizing such a potential. When positive, the path would be opened to pico
chemistry and physics (YPCP).

Theoretical
Basis to assess the effects of the new potential:

A first attempt to describe the expected effects of such a potential had been presented [1].
Recently [2], arguments have been reported, (in the frame of Standard Model Extension –
Lorentz symmetry violation) for the possible existence of a Yukawa type of potential, with a
range extending farther than fm and up to pm distances. The YPCP model has been built on this
possibility. It aims at proposing and designing unambiguous experiments, to assess the effects
and hence the reality of this potential.
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From [2], the following Yukawa type of potential, acting between nucleons, was extracted
(and is called along this article: weak long range Yukawa potential):

2
r

WLY

e
V Cg

r



  (1)

(C being a constant, g2 the coupling constant of the strong nuclear force and  ( 0 ) the
reverse of the range ' .)

A candidate for the required boson carrying the interaction could be creation and exchange of
electron-positron pairs (neutral). In the context of Feynman's equation for the Yukawa
potential, the effect extends into the picometer range. This would have to be examined in detail
when experiments are positive [3].

This yet unknown weak long range Yukawa potential should have an influence on neutron
capture cross sections. Indeed, the variations of the neutron residence time, (depending upon its
energy), in the range of this potential, is a straightforward explanation of the observed
variations of the neutrons capture cross sections (apart from the resonance zones).

The model used to test the YPCP hypothesis and its main experimental predictions:

A description of the YPCP model is given in [4]. The model have been run with a range ' of

1,3 pm and a coupling constant 2Cg of 5.048*10-28 that is 2 times the electro-magnetic coupling

constant. Possible bound states of the proton (deuteron) at pm distances from the target atoms
can thus be visualized. The amplitude of the potential barrier to be overcome to reach these
bounds states, can also be evaluated. Only in the case of deuterium, were bound states
visualized.

Two cases were thus considered, representative of the experimental situations to be
examined:

The deuterium/palladium case (gas loading experiments YPC: Yukawa Pico Chemistry).

The deuterium/deuterium case (proton beam experiments YPP: Yukawa Pico Physics).
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Figure 1. Palladium/deuterium total energy with Lennard-Jones potential.

It can be seen that the total energy remains positive and increases, from 0 at the periphery of
the palladium (179 pm) up to 10000 eV at some 6 pm from the nucleus. The total energy then
decreases to negative values and the deuteron could reach the nucleus, resulting in a nuclear
reaction. It is thought that this is prevented by the Pauli exclusion principle, the K electrons
having few energy levels available. To take this into account, a Lennard-Jones type of potential

has been added to the other potentials. Stable bound states, such as 106 2
46 1,Pd H   , a deuteron at

some pm from a Pd nucleus, reaction enthalpy of some 9000eV), could be justified.

Figure 2. Deuterium/Deuterium total energy.
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It can be seen that the total energy remains positive and increases from 0 at the periphery of
the deuterium (73 pm) up to 140 eV at some 10 pm from the nucleus and 113 keV at some 15
fm from it. The total energy then decreases sharply and a d/d fusion reaction can take place.
The potential barrier to be overcome is rather low and thin. This could be an explanation of the
increase of the fusion reaction cross section at low energy of the deuteron, observed with
deuteron beam experiments [5]

The YPCP conjecture and the CF-LENR field

Palladium gas loading:

The 30 MeV Coulomb barrier to be overcome, for a Pd/d reaction to occur, could be reduced
to a few keV (see Figure 1). Collective or resonant effects in the lattice [6] could then trigger
pico-chemical reactions, at the macroscopic level. X-Rays emitted in the keV level of energy
could sustain the reaction once initiated (“heat after death” [7,8]) and expel helium4 present in
the virgin palladium.

Products from these hypothetical pico-chemical reactions are probably rather stable (Pauli
exclusion principle). The probability of reacting is nevertheless not zero. The nuclear reaction
would be:

106 2 108
46 1 47 * (excess energy* 10.8 MeV)Pd H Ag    (3)

108
47 *Ag then decaying through  emission (energy 10.8 MeV/ ), ultimately yielding 104

46 Pd

through   decay (1.4 MeV, and X-Ray emission) of intermediate 104
45 Rh . (4) This type of

reaction would cause a shift in palladium isotopes.

This could explain observations made in SPAWAR experiments, where entities such as
106 2
46 1,Pd H   (pseudo silver [12]), formed during electrolysis on the cathode, could pass into the

electrolyte and then react according to (3) and (4), in unexpected places in the experiment [9].

Electrolysis and gas discharges should yield the same products patterns.

Proton (deuteron) beam experiments:
Typical experiments with deuterons beams, are run with energies of the deuterons of

hundreds of keV. Recent experiments [5], run with deuterons energy round 5 keV have shown
a surprising high level for the reaction cross section. This has been attributed to a screening
potential of the electrons, in the order of hundreds of eV. The weak long range Yukawa
potential could add to this screening effect: its action being energy dependant, lowering the
energy of the impacting deuteron could be favorable. The full Coulomb barrier (some 300 keV)
would also be reduced down to some 110 keV. It is then thought that the use of deuterons of
energies in the range 15 to 150 eV, could increase the d/d fusion cross section observed in [5].
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Experimental
Reaction enthalpies of pico-chemical reactions:

The enthalpy of formation of pico-chemical products formed by reactions such as (3) during
deuterium loading of palladium, will be determined. The heat released will be measured using
an ice calorimeter built and characterized for that purpose. A detailed description of this device
is given in [10]. Pure palladium black (activated at 230°C, under 10-1 mb pressure) will be
used, thus eliminating the pollution that might be caused by a support [7].

After the experiment, the processed samples will be recovered for analysis.

Charged particle emission:

The possibility of the emission of charged particles caused by the impact of low/medium
energy protons or deuterons (between 15 and 150 eV) on a metallic target will be assessed. Use
will be made of a device that has been built to generate protons with energies in that range.

Description of the proton (deuteron) generator:

A concept similar to the Penning ion source has been used: a cloud of protons or deuterons
(and not a beam) is generated. The protons or deuterons then impact, with a controlled energy,
a target made from the metal to be studied. See Figure 3 and Ref. [4].

Figure 3. Proton (deuterium) generator.

Hydrogen (deuterium) leaking at a pressure between 1 and 10-2 mb, enters a vertical pyrex
tube (12 mm diameter). At the outlet of the tube, the hydrogen expands into a vacuum chamber,
maintained at a pressure between 10-1 and 10-2 mb by a primary vacuum pump. The use of a
secondary vacuum pump allows the pressure in the vacuum chamber to be lowered to values in
the range 10-2 and 10-3 mb.

Currents of 15 eV protons, up to 500 µA have been obtained.
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Description of the analysis to be performed:

From the conclusions of the YPCP model, it is anticipated that, depending upon the
experimental situation, 2 kinds of reactions will occur, pico-chemical and d/d fusion reactions:

- the enthalpy of the pico-chemical reactions (YPC), resulting from the binding of a proton
(deuteron) close to the nucleus of the treated atom (in the order of some pm) will be
determined from the heat released during gas loading experiments and from the amount of
products formed (ICP-MS and XRF see [4,11]). This non nuclear reaction would have an
enthalpy of reaction of a few keV. X-Rays of that energy could be emitted. Only deuterium
is expected to react.

- true nuclear d/d fusion reactions, resulting from pico physics (YPP), will be characterized
by their usual reaction products (protons, helium3 and neutrons) with associated energies.
These reactions are expected to occur in the proton (deuteron) generator.

Conclusion
If positive, the proposed experiments would prove the reality of the YPCP working

hypothesis and the existence of the weak long range Yukawa potential. Once this necessary
scientific confirmation is obtained, funding could be obtained for developments that can be
envisaged along 2 paths:

- nuclear wastes remediation [13] and small heat generators (if metals other than palladium can
be used). These developments could be achieved through gas loading, electrolysis, electrical
discharges …

- true cold fusion d/d reactions (deuterons beam experiments) ultimately leading to a d/d fusion
reactor based on well mastered technologies, using usual temperature and pressure conditions.
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Abstract
A cavity in a solid, first of all, serves as a place of confinement for a Deuterium
molecule. Two deuterons in the molecule are trapped together in close proximity.
Thus, they may engage in 'Low Energy Nuclear Reaction' which requires longer
time, unlike collision type of nuclear reaction. Secondly, the electric field in the
cavity (to be shown below) superimposed on this deuteron-pair would lower the
Coulomb barrier between them facilitating a 'Low Energy Fusion' reaction.
Furthermore, neutron exchange reaction between two deuterons (in an analogous
manner like the electron exchange that forms a Deuterium molecule) is like a
'Long Range' force (as compared to the range of nuclear force) that can pull two
deuterons together. This range is longer than that of the pi-plus exchange
nuclear force between a proton and a neutron, because neutrons are charge
neutral. [1] Longer reaction time; [2] Lowered Coulomb Barrier; [3] Longer
range are the necessary conditions for (d-d) 'Cold Fusion'.

Earlier, in reference (1), the neutron exchange potential was modeled as a slow-varying
function of the (d-d) separation.

Vex = -A -B exp ( - K rdd ) (1)

A = 4.4 MeV corresponds to twice the neutron binding energy in deuteron when the two
deuterons are far apart, and A+B = 28.4 MeV corresponds to the sum of the binding energies of
the two neutrons in 4He nucleus, when the two deuterons are combined.

This potential is not for a 'new' force between two deuterons. It is simply a manifestation of
proton-neutron nuclear force. Just like the electron exchange interaction that binds two
hydrogen atoms to form a molecule is a manifestation of Coulomb force between electron and
proton. This exchange interaction between two neutral hydrogen atoms is mediated through the
exchange of electrons when the two Hydrogen- wavefunctions overlap. One does not need to
solve a four-body [two protons with two electrons] quantum mechanical problem using
Coulomb forces. Because, the two protons in the pair of hydrogen atom are sufficiently far
apart even after the molecule is formed. Only the Coulomb potential energy between them
needs to be considered. Likewise here, the interaction mediated through neutron exchange
when the two Deuteron-wavefunctions overlap has a range larger than that of nuclear force.
One does not need to solve a four body (ppnn) quantum mechanical problem using nuclear
force because the two protons of the deuteron pair trapped inside a cavity are also far
[comparing to nuclear force range] apart.
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Together with the Coulomb-repulsion potential

Vc = k / rdd (2)
the total potential

VT = Vex + Vc (3)
as a function of rdd depending on the values of K and k could have no maximum or minimum
[monotonously drops from positive infinity to -4.4 MeV], one plateau, or one minimum and
one maximum [VT drops from positive infinity to a minimum then rises up to a maximum,
finally asymptotically approaches -4.4 MeV].

In a space free of external field like inside a Deuterium molecule in vacuum, k = e2 / (4πεo) =
14.4 eV/ (10-10 m) is a constant, not an unknown parameter. Since 'Cold fusion' of the two
deuterons in a Deuterium molecule has never been observed, a lower limit for K = 9 (1/ fermi)
[1 fermi = 10 -15 m] can be determined (see reference 3). In other words, K for the neutron
exchange potential must be larger than this lower limit. Which means, in vacuum space the
Coulomb barrier dominates over the attraction (due to neutron exchange) at all ranges of
deuteron separation. In reference (3) K = 12 (1/f) [larger than the lower limit mentioned above]
was chosen to investigate cases of 'weakened' Coulomb repulsions. It was found, if the
Coulomb field is weakened by 50% or more, a shallow minimum (around Krdd = 1) plus a
broad low maximum (around Krdd = 10) of VT [the total potential] exists. A pair of deuteron
under this condition can in time via tunneling through this broad and low barrier ends up in this
potential minimum region. Then, through de-excitation (via radiation emission) this pair may
energetically drop into a stable bound state and finally fused together forming a He4 nucleus
(see reference 3).

In reference (2), it was argued that the electric field inside a cavity (or void) of a solid is not
zero. Instead, this field should be very much like that inside a virtual 'anti-atom'. Here, a cavity
is the void created by taking away one atom from a perfect solid. One can visualize this
argument by placing or superimposing an 'anti-atom' into a perfect solid. This anti-atom would
charge-wise neutralize one of the atoms and thus generating a charge void or cavity.
Consequently, the electrostatic field inside a cavity can be considered to be the superposition of
two fields, one due to the charge distribution of an anti-atom the other due to all atoms in a
perfect solid at this site. In a first order approximation, one assumes the average field inside a
perfect solid is everywhere zero because all atoms are neutral. In that case, since the field inside
an anti-atom is negative or attractive to positive charges both deuterons in a trapped Deuterium
molecule are pulled toward the center of the cavity. Effectively, this field inside a cavity does
'weaken' the Coulomb repulsion between the two deuterons and thus facilitating a scenario of
'Cold Fusion' described above.1

1 The assumption that the average field inside a solid is zero everywhere is hard to justify.
Furthermore, to assume the charge distribution at the location of the cavity is exactly like that
of a ‘free’ atom such that the charge distribution of a ‘free’ anti-atom will charge-neutralize this
location creating a charge-void like the cavity is equally hard to justify. The author is grateful
to a reader of the draft for pointing out the weakness of arguments. (C.M.F.)
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Direct measurement of this field is difficult. One can probably do it indirectly by measuring
the energy shifts of inner-shell transition of the atoms trapped inside such cavities. It is also not
easy to determine such a field analytically. Large scale simulation or numerical calculation
should yield useful results to strengthen the argument for the feasibility of dd-cold fusion inside
a cavity.
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 Editor’s note: A reviewer has argued that the author’s ingenious construction (here and in ref.
(2)) appears to contradict Gauss’s law, to the extent that it entails a charge-free region with an
electrical flux directed inward everywhere on the surface. The reviewer concurs that further
work is desirable to clarify the character of the field.
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Abstract
In the last two decades, irrefutable experimental evidence has shown that Low
Energy Nuclear Reactions (LENR) occur in specialized heavy hydrogen systems
[1-4]. Nevertheless, we are still confronted with a problem: the theoretical basis
of LENR are not known and, as a matter of fact, little research has been carried
out on this subject. In this work we seek to analyse the deuteron-deuteron
reactions within palladium lattice by means of Preparata’s model of the
palladium lattice [5,15]. We will also show the occurrence probability of fusion
phenomena according to more accurate experiments [6]. We are not going to use
any of the research models which have been previously followed in this field.
Our aim is to demonstrate the theoretical possibility of cold fusion. Moreover,
we will focus on tunneling the existent Coulomb barrier between two deuterons.
Analysing the possible contributions of the lattice to the improvement of the
tunneling probability, we find that there is a real mechanism through which this
probability could be increased: this mechanism is the screening effect due to d-
shell electrons of palladium lattice. The accordance between theoretical and
experimental results will prove the reality of cold fusion phenomena and show
the reliability of our model.

1. Introduction
Our research has shown that cold fusion phenomena were verified by the Coherence Theory

of Condensed Matter. In this theory [5] it is assumed that the electromagnetic (e.m.) field plays
a very important role on dynamic system, due to elementary constituents of matter (i.e. ions and
electrons). Due to charged matter, considering the coupling between e.m. equations and the
Schrödinger equation of field matter operator, it is possible to demonstrate that the matter
system shows a dynamic coherence in proximity of e.m. frequency 0.. Hence, it is possible to
define the coherence domains, whose length is about CD =2/0 .

The simplest model of matter with coherence domain is obviously the plasma system. In
classical plasma theory we have to consider the plasma frequency p and the Debey length that
measures the Coulomb force extension, i.e. the coherence domain length. In order to address
the crucial issue of the nuclear fusion reaction involving the deuterons that pack the Pd-lattice,
we must have a rather detailed understanding of the environment in which such nuclear process
will eventually take place.
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For a system with N charge Q of m mass within a V volume the plasma frequency can be
written as:

V

N

m

Qe
pk
   (1)

Introducing the dimensional variable tp  we can rewrite the above equations as follows:
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Defining the state as:
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and the e.m. field amplitude as:
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we can rewrite as follows:
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If we only concentrate on a short time dynamics, we can write:

0)0(  (8)

then, creating a difference in the (6) and using the (7) with 0 , we can easily obtain:
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This has the same form of the equations of the coherence domains as the case in which:
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So, a solution for the ideal plasma exists. More in detail, we can define:
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In this case the coupling critical constant is:
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so to admit the following holding quantity:
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while for the Hamiltonian’s it is easy to compute:
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With the aim of seeing if there are any externals solutions, we write

 i
kk eu (16)

i
kk eAuA  (17)

where  and A are positive constants and uk is a complex vector.

Changing these ones in (12) and (13) we have:
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and by the condition Q=0 (we cannot have a net charge flow in a plasma), we have:
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In this case it is easy to observe that for
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0
3
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g it is unlikely that both the equations

(18) and (19) are satisfied.
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This result means that the energy of an ideal quantum plasma does not have a minimum; in
other words, an ideal quantum plasma does not exist.

That must not be surprising, because the Hamiltonian’ describes this plasma as a system
whose amplitude oscillations are arbitrary, whereas the limit over a certain amplitude does not
exist in a real plasma.

But by:
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it is easy to obtain:
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Also, in the plasma approximation as an homogeneous fluid, we suppose that our
Hamiltonian’s stops have to be valid for the oscillations bigger than the following:
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that is when plasma oscillations are of the same order as the inter-particle distance a. In order to

create some more realistic models of plasma, we want to compute the breaking amplitude max

obtained by the combination of the equations (22) and (23) for a gas of electrons.

Using the definition of p , we have:
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  (24)

taking

Åa 5.2

the result is

max  2.7 Å

This simple calculation shows how it is possible to change our quantum ideal plasma in a real
plasma. As the oscillations remain very low in a plasma, a two level model can be a good
approximation (the dynamics only includes the first excited state). A consequence of this
approximation consisting in the reduction of the plasma in a homogeneous fluid is the changing

of the plasma frequency  p as follows:
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Q
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Moreover, we study the “nuclear environment” that is supposed existent within the palladium
lattice D2-loaded and at room temperature as predicted by the Coherence Theory. As a matter
of fact, some physicists declared that it is possible to observe traces of nuclear reactions [1,2,3]
when the palladium lattice is loaded with deuterium gas. For this reason many of these
physicists define that as a Low Energy Nuclear Reaction (LENR).

One of the most interesting experiments shows that in the D2-loaded palladium case the most
frequent nuclear reactions are:

1) MeVpHDD 03.43 

2) MeVpHDD 85.234 

The aim of our work is to propose a “coherence” model, by means of which we can explain
the occurrence of reactions 1) and 2) and their probability according to more reliable
experiments. First of all, we will start from the analysis of the environment, i.e. of plasmas
present within palladium (d-electron, s-electron, Pd-ions and D-ions); we will do so using the
coherence theory of matter. Then, we will use the effective potential reported in ref. [7,8] and
add the role of lattice perturbations, by means of which we will compute the D-D tunneling
probability.

2. The plasmas within non loaded palladium
According to the Coherence Theory of Condensed Matter, in a palladium crystal at room

temperature the electron shells are in a coherent regime within a coherent domain. In point of
fact, they oscillate in tune with a coherent e.m. field trapped in coherent domains.

So, in order to describe the lattice environment we must study the plasma of s-electron and d-
electron.

a) The plasma of d-electrons
Similar arguments were proposed by Preparata, but starting from a new formulation of

condensed matter theory known as Coherence Theory.

In this theory we can visualize the plasma formed by d-shell electrons as consisting of shells
charged nd e (for palladium nd =10) radius rd =1 Å and thickness a fraction of one Angstrom.
The classical plasma

V

Nn

m

e d
d  (26)

is d-electrons plasma frequency. But according to the coherence theory of matter we must
adjust this plasma frequency of a factor 1.38.

We can understand this correction by observing that the formula (26) is obtained assuming a
uniform d-electron charge distribution. But of course the d-electron plasma is localized in a
shell of radius R (that is about 1Å), so the geometrical contribution is:

38.1
6



(27)
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If we rewrite the renormalized d-electron plasma frequency with d , we have

/5.41 eVd  (28)

and the maximum oscillation amplitude d is about 0.5 Å.

b) The plasma of delocalized s-electrons
The s-electrons are those neutralizing the absorbed deuterons ions in the lattice. They are

delocalised and their plasma frequency depends on the loading ratio (D/Pd percentage). The
formula (28) can also be written as:
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where







 pda V
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N
1 (30)

and Vpd is the volume effectively occupied by the Pd-atom. As reported in reference [5], we
obtain:

/2.152/1 eVxse  (31)

As an example, for x=0.5, we have se ~10.7 eV/ħ.

c)The plasma of Pd-ions
Furthermore, we can consider the plasma according to the palladium ions forming the lattice

structure; in this case it is possible to demonstrate that the frequency is (28):

eVpd 1.0 (32)

3. The plasmas within D2-loaded palladium
In this section we seek to show what happens when the absorbed deuterium is placed near the

palladium surface. This loading can be enhanced using electrolytic cells or vacuum chambers
working at opportune pressure [9, 10]. By means of Preparata’s theory of Condensed Matter, it
is assumed that there are three phases concerning the D2-Pd system, according to the ratio
x=D/Pd:

1) phase for x<0.1

2) phase  for 0.1<x<0.7

3) phase for x > 0.7

In the  phase, the D2 is in a disordered and not coherent state (D2 is not charged).

As far as the other two phases are concerned, we can conclude that the following reaction
takes place on the surface because of the lattice e.m.:

 eDDlattice (33)



562

Then, according to the loading quantity x=D/Pd, the ions of deuterium can occur on the
octahedrical sites (Fig. 1) or on the tetrahedral (Fig. 2) in the (1,0,0)-plane. In the coherent
theory of the so called -plasma of Preparata’s the deuterons plasma are in the octahedral site
and the -plasma are in the tetrahedral.

Figure 1. The octahedral sites of the Pd lattice where the deuterons are located

Figure 2. The thin disks of the tetrahedral sites of the Pd lattice where the deuterons are located

Regarding the -plasma, it is possible to affirm that the plasma frequency is given by (28):
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For example, if we use a=0.4 and x=0.5 we obtain =0.168 eV/ħ.
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In the tetrahedral sites the D+ can occupy the thin disk that encompasses two sites (Fig. 3),
representing a barrier to the D+ ions. We must underline that the electrons of the d-shell start
oscillating near the equilibrium distance y0 (about 1.4 Å ), so that the static ions have a cloud of
negative charge (see reference [5]).

What follows is:

/65.0
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2
0

eV
ym

Z

D

eff



 (36)

Of course, this frequency also depends on the chemical condition of the palladium
(impurities, temperature etc…)

Figure 3. Possible d-electron plasma oscillation in a Pd lattice

Due to a large plasma oscillation of d-electrons, a high density negative charge condenses in
the disk-like tetrahedral region, where the -phase D+’s are located. This gives rise to a
screening potential W(t), whose profile is reported in Fig. 4.

Figure 4. The profile of the electrostatic potential in the η-direction 
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Having mapped that the -phase depends on x value, we can experimentally observe the new
phase in reference [11], which is very important in the LENR investigation. This is
demonstrated by the fact that many of the “cold fusion physicists” declare that the main point
of cold fusion protocol is the loading D/Pd ratio higher than 0.7, i.e. the deuterium takes place
in the tetrahedral sites.

4. The D-D potential
In reference [7], it was shown that the phenomenon of fusion between nuclei of deuterium in

the lattice of a metal is conditioned by the structural characteristics, by the dynamic conditions
of the system and also by the concentration of impurities that are present in the metal under
examination.

In fact, the height of the Coulomb barrier decreases according to the varying of the total
energy and of the concentration of impurities that are present in the metal itself. This can be
observed studying the curves of the potential of interaction between deuterons (including the
deuteron-plasmon contribution) in the case of three typical metals (Pd, Pt and Ti), as shown in
a three-dimensional model.

The initial potential that connects the like-Morse attraction and the like-Coulomb repulsion
can be written as seen in reference [7, 8]:

V r( )  k   






 


r
rV

r

q
M

2

0 (37)

where  V r M is the Morse potential, )4/1( 00 k , q is the charge of the deuteron, Md is the

reduced mass of the deuterium nuclei, T is the absolute temperature at which the metal is
experimentally placed, J is the concentration of impurities in the crystalline lattice and R is the
nuclear radius.

In (37),  V r M is a like-Morse potential, and is given by:

        00 exp22exp rrrrBrV M   (38)

Here the parameters B,  ed r0 depend on the lattice.

In fact, the potential (37) is an effective one whose reliability is demonstrated by its ability to
fit the Coulomb potential for r → 0 and the Morse potential in the attractive zone. So, Siclen
and Jones [12] define  the point where the Coulomb potential is associated to the Morse trend,
r’0 the equilibrium distance and D’ the well.

Of course in the free space for a D2 molecular,  is about 0.3 Å , r’0 is about 0.7 Å and D’ is -
4.6 eV.

But screening effects are present within the lattice, and the deuteron-deuteron interaction
modify these parameter values by means of phonon exchange.
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Since the screening effect [1] can be modulated by the giver atoms, in reference [7,8] we

have considered the role of impurities and we came to the following: 









Tkb
JJ


exp0 .

Furthermore, some particular reactions could occur, incorporating the impurities in the
nucleus of the dislocations. This may happen as a result of a different arrangement of the
atoms, with respect to that of the unperturbed lattice.

This type of process has been extensively studied in the literature concerning metals and the
case of crystalline semiconductors at high temperature.

As an example, in the case of crystalline semiconductors it has been found that the
concentration of interstitial impurities around a linear dislocation with a point component

depends on the temperature, as shown by the law written above where 0J is the concentration

of impurities in the zone with zero internal pressure, (b3
 vi) is the volume of the ions

constituting the lattice, while is proportional to the difference (vd - vi) between the volume of
the impurity atoms and that of the lattice ions.

Our conjecture is that in a metal, such as palladium, a similar phenomenon could occur
between the atoms of deuterium penetrating the lattice. This would be a result of the deuterium
loading and of the microcracks produced by variations in temperature. In this case, the
parameter  of the previous expression would be negative, determining an increase in the
concentration of deuterons in the vicinity of the micro-crack, which would then catalyse the
phenomenon of fusion as:

 =JKTR (39)

and

B=J/ 

So we can write the effective d-d potential as follows:
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where  V r M is the Morse potential, )4/1( 00 k , q is the charge of the deuteron, Md is the

reduced mass of the deuterium nuclei, T is the absolute temperature at which the metal is
experimentally placed, J is the concentration of impurities in the crystalline lattice and R is the
nuclear radius.



566

Considering the attractive force, due to the exchange of plasmons, the main contribution are
as follows:

Figure 5. Plasmon exchanges. Solid lines indicate deuterons and wiggly lines indicate plasmons

Taking into account the role of coupling between deuteron and plasmons, in reference [13] a
D-D potential was numerically evaluated, having the features of the potential (14) with D’= -50
eV , with r’0=0.5 Å and with  =0.2 Å (it has to be also taken into account that only two
plasmon excitations at 7.5 eV and at 26.5 eV are considered in ref. 13).

The features of the potential (37) is shown in Fig. 6.

Figure 6. The solid line shows the features of potential (37) computed in order to obtain D’=-50 eV and
=0.165 Å. The coulomb potential in dashed line is computed using a screening constant of 85 eV. The

distance in Bohr radius unit is reported on the x-axes, and the energy in eV is shown on the y-axes.

We are now going to study the role of potential (41) in the three different phases ,  and
according to the coherence theory of condensed matter.
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A couple of points require preliminary explanations before we proceed, namely:

1) what KT is;
2) what the role of plasma ions and of electrons is;

Let us start with point 1. According to the different deuteron-lattice configurations, KT can
be:

i. the loaded lattice temperature if we consider the deuterons in the -phase;
ii.  if we consider the deuterons in -phase;
iii.  if we consider the deuterons in the -phase;

The second point requires a much more complicated explanation. In fact, the lattice
environment is a combination of coherent plasmas (ion Pd, electron and deuterons plasma) at
different temperature, due to different masses, which makes the description of the emerging
potential very difficult.

The method we propose to follow in this work is to consider the total screening contribution
of lattice environment at D-D interaction (i.e. Vtot) as random potential Q(t). According to this
model, we have

)()()( tQrVtVtot  (42)

Of course, we assume that:

0)( 
t

tQ (43)

that is to say that Q(t) (a second order potential contribution) is a periodic potential that
oscillates between the maximum value Qmax and 0. The frequency will be called by Q.

More exactly, the oscillation charges of d-shell produce a screening potential having an
harmonic feature:
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Considering Zd=10/3 and a0= 0.7 Å in reference [5], a screening potential V0 is evaluated of
about 85 eV. In this way we can compute =V0/26.9 and at last  = 0.165 Å. Resuming, in a
palladium lattice we can have the following cases according to the loading ratio:

i) α-phase 
In the phase  the deuterons are in a molecular state and the thermal motion is about:

0.02 eV < ħ < 0.1 eV

This phase takes places when x is lower than 0.1, and since W(t) is zero, the D-D potential is:
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The expression (45) was partially evaluated in a previous paper [7]; in fact, we were only
interested in the dependence of the tunneling probability on impurities present within the
lattice. Through the present work, we seek to examine the correlation between potential
features and loading ratio. Some numerical results are showed in the paragraph 5.

ii) β-phase 
Phase  happens when x is higher than 0.1 but lower than 0.7. The interaction takes place

among deuteron ions that oscillate between the following energy values:

0.1 eV < ħ < 0.2 eV

In this case W(t) is zero, we can express the potential as follows:
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Comparing the expressions 45 and 46, it seems clear that the weight of impurities is more
important in the -phase. Of course this conclusion relates to previous papers [7,8] in which we
have studied the role of temperature on tunneling effect.

iii) γ-phase 
Lastly, the deuteron-palladium system is in the phase  when the loading ratio is higher than

0.7.

This is the most interesting case. The deuterons cross the screening through the d-electrons
shell. In this respect, we did a numeric simulation where we supposed that the D-D potential
must be computed on the assumption that the potential (37) well disappears because of the
Morse contribution. In fact, if we use a classical plasma model where the D+ ions are the
positive charge and the d-electrons the negative one, it is very “realistic” to obtain the
following potential:
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where Q(t) is an unknown perturbative potential. On this topic, we can also add that:

2
)( maxW
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In the next evaluation it is given as:

eVtQ
t

85)(  (49)

5. Conclusions
The aim of this section is to present the D-D fusion probability normalized to number of

events per second regarding the D-D interaction in all different phases. More exactly, we seek
to compare fusion probability in phases ,  and according to the variation of energy between
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–50 to 50 eV. We also consider the role of d-electrons screening as a perturbative lattice
potential.

This process only involves the case where Q(t) is different from zero. It involves a change of
the value on the x-axes point where the Coulomb barrier takes place; in this case, what we
obtain as a final result is that the screening enhances the fusion probability. In order to evaluate
the fusion rate () we applied the following formula:

 (50)

Where  is the Gamow factor and A is the nuclear reaction constant obtained from cross
sections measured (value used was 1022 sec-1).

From an experimental point of view, it is possible to affirm that there are three typologies of
experiments in the cold fusion phenomenology [14]:

1) Experiments giving negative results
2) Experiments giving some results (little detection signs with respect to background,

fusion probability about 10-23 using a very high loading ratio)
3) Experiments giving clear positive results, such as the Fleischmann and Pons

experiments.

In our opinion, the experiments of the third type lack accuracy from the experimental point of
view. In this sense, we prefer a theoretical model of the controversial phenomenon of cold
fusion to explain only experiments of type 1 and 2. In this case it is important to consider the
role of the loading ratio in the experimental results. Now, let us begin from the -phase.

Results for the -phase are shown in Table 1. As shown there, the theoretical fusion
probability is lower than 10-74, that is to say, extremely low. Consequently, we can affirm that
no fusion is possible through the loading of a percentage of x < 0.2 in the deuterium. The same
absence of nuclear phenomenon is compatible for a loading ratio of about 0.7 (Table 2), since
in this case the predicted fusion probability is lower than 10-42. These predictions, of course,
agree with the experimental results (for x>0.7, look at reference [6]). The result of our model is
confirmed in the -phase, where we can observe some background fluctuations. Due to a high
loading ratio, we predict a fusion probability at about 10-22 in these background fluctuations.
This is a previously unattained result. This is also a very important one for references [7,8],
since in those cases the fusion probability was independent of the loading ratio.

To conclude, our aim is also to show that the model proposed in this paper can explain some
irregular nuclear traces in solids, unifying nuclear physics with condensed matter. On the other
hand, regarding the experiments of type 3, we want to consider other contributions as micro-
deformation occurrence, in order to explain the very high fusion rate. The role of micro-crack
and impurities linked to the loading ratio will be explored in other speculative works. “The
nuclear physics within condensed matter” may be a new device through which an
understanding of new productive scientific issues could be possible.
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Table 1. Using the phase potential (potential 45), the fusion probability has been
computed for Pd “Impure” (J ≈ 0.75%), normalized to the number of event/sec for 
different values of energy (- 50 eV<50 eV). Palladium J  0.75%   0. 34 Å r’0=0.7 Å D’= -50

eV

ωα  0.0025 eV ωα  0.05 eV ωα  0.075 eV ωα  0.1 eV
E ≈ - 50 P ≈ 10-100 P ≈ 10-103 P ≈ 10-100 P ≈ 10-99

E ≈ - 40 P ≈ 10-99 P ≈ 10-101 P ≈ 10-98 P ≈ 10-97

E ≈ - 30 P ≈ 10-97 P ≈ 10-100 P ≈ 10-96 P ≈ 10-96

E ≈ - 20 P ≈ 10-95 P ≈ 10-99 P ≈ 10-94 P ≈ 10-93

E ≈ - 10 P ≈ 10-94  P ≈ 10-97  P ≈ 10-91  P ≈ 10-90

E ≈ - 0 P ≈ 10-92  P ≈ 10-96  P ≈ 10-90  P ≈ 10-86

E ≈ 10 P ≈ 10-91  P ≈ 10-94  P ≈ 10-87  P ≈ 10-83

E ≈ 20 P ≈ 10-90  P ≈ 10-92  P ≈ 10-85  P ≈ 10-80

E ≈ 30 P ≈ 10-89  P ≈ 10-90  P ≈ 10-82  P ≈ 10-78

E ≈ 40 P ≈ 10-86  P ≈ 10-89  P ≈ 10-80  P ≈ 10-74

E ≈ 50 P ≈ 10-84  P ≈ 10-87  P ≈ 10-79  P ≈ 10-71

Table 2. Using the β-potential (potential 46), the fusion probability P has been computed 
for Pd “Impure” (J ≈ 0.75%), normalized to the number of event/sec for different values 
energy (- 50 eV<E<50 eV). Palladium J  0 .75%   0. 34 Å r’0=0.7 Å D’= -50 eV

 ωβ ≈ 0.125 eV ωβ ≈ 0.150 eV ωβ ≈ 0.175 eV ωβ ≈ 0.2 eV
E ≈ - 50 P 10-83 P ≈ 10-88 P ≈ 10-86 P ≈ 10-81

E ≈ - 40 P ≈ 10-81 P ≈ 10-87 P ≈ 10-85 P ≈ 10-75

E ≈ - 30 P ≈ 10-80 P ≈ 10-86 P ≈ 10-83 P ≈ 10-73

E ≈ - 20 P ≈ 10-79 P ≈ 10-85 P ≈ 10-80 P ≈ 10-70

E ≈ - 10 P ≈ 10-78  P ≈ 10-84  P ≈ 10-74  P ≈ 10-68

E ≈ - 0 P ≈ 10-76  P ≈ 10-82  P ≈ 10-73  P ≈ 10-62

E ≈ 10 P ≈ 10-75  P ≈ 10-81  P ≈ 10-72  P ≈ 10-60

E ≈ 20 P ≈ 10-74  P ≈ 10-79  P ≈ 10-71  P ≈ 10-54

E ≈ 30 P ≈ 10-73  P ≈ 10-76  P ≈ 10-70  P ≈ 10-50

E ≈ 40 P ≈ 10-72  P ≈ 10-75  P ≈ 10-69  P ≈ 10-45

E ≈ 50 P ≈ 10-71  P ≈ 10-70  P ≈ 10-65  P ≈ 10-42
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Table 3. Using the γ-potential (potential 47), the fusion probability has been computed for 
Pd “Impure” (J ≈ 0.75%), normalized to the number of event/sec for different values of 
energy (- 50 eV<E<50 eV). Palladium J 0 .75%   0. 165 Å r’0=0.35 Å D’= -50 eV

 ωγ ≈ 0.6 eV ωγ ≈ 0.65 eV ωγ ≈ 0.7 eV ωγ ≈ 0.75 eV
E ≈ -50 P ≈ 10-71 P ≈ 10-51 P ≈ 10-57 P ≈ 10-50

E ≈ -40 P ≈ 10-68 P ≈ 10-49 P ≈ 10-54 P ≈ 10-47

E ≈ -30 P ≈ 10-66 P ≈ 10-47 P ≈ 10-51 P ≈ 10-44

E ≈ -20 P ≈ 10-62 P ≈ 10-44 P ≈ 10-49 P ≈ 10-41

E ≈ -10 P ≈ 10-60  P ≈ 10-41  P ≈ 10-46  P ≈ 10-39

E ≈ 0 P ≈ 10-57  P ≈ 10-39  P ≈ 10-43  P ≈ 10-36

E ≈ 10 P ≈ 10-54  P ≈ 10-38  P ≈ 10-42  P ≈ 10-33

E ≈ 20 P ≈ 10-51  P ≈ 10-35  P ≈ 10-40  P ≈ 10-32

E ≈ 30 P ≈ 10-49  P ≈ 10-32  P ≈ 10-36  P ≈ 10-29

E ≈ 40 P ≈ 10-47  P ≈ 10-30  P ≈ 10-33  P ≈ 10-25

E ≈ 50 P ≈ 10-45  P ≈ 10-27  P ≈ 10-30  P ≈ 10-21

Our aim is to propose a theoretical model explaining the experiments implying a high
production of energy, so as to be repeatable, reproducible, and shared by the scientific
community. Our starting point is the following: the phenomenon of the low-energy fusion
critically depends on the interaction between the d-d nuclear system and the D2 gas system on
one side, and the lattice of the palladium on the other side.

In fact, the typical deuterium-plasma interaction of the  phase grows at the variation of the

loading percentage. So, the electrostatic repulsion is weakened. But while the deuterium
loading in the gas phase grows, the palladium lattice is deformed.

Other theoretical and experimental studies about the electric field are in progress. To be
clearer, here is a brief explanation of the main passages of the lattice reaction: firstly, we have
the deformation; secondly, the dislocation; and lastly, the micro-crack.

If the lattice is deformed, the creation of a microscopic electric field occurs within the micro-
crack, in which the D+ and the plasmons collide. Moreover, the deuterium nuclei are
accelerated in that field, as it happens in a classic accelerator of nuclear physics. This
acceleration can also generate the phenomenon of low-energy fusion.
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Quantum Fusion Hypothesis
Robert E. Godes
Profusion Energy

Abstract
The field of cold fusion is not “fusion” as the current establishment defines it.

A basic tenet of research is that correlation does not equal causation. The current
assumption of Deuterium Deuterium (DD) fusion based on the excellent work of
Dr. Michael McKubre showing a near perfect match of excess heat to helium
produced is only a correlation. The assumption of DD fusion may be fallacious
and leading to a dead end. In many cases the Pons Fleischmann reaction starts
with deuterium and ends with helium. This would seem to indicate DD fusion,
but this is assuming that correlation equals causation.

Related Fields
The Quantum Fusion (QF) Hypothesis explains the Fleischmann-Pons Effect and a large

cross section of experiments researchers in this field have observed. It is an explanation of how
cold to ultra cold neutron(s) form. QF draws on work in the fields of mechanics, chemistry
including molecular, quantum and computational, material science, physics, including quantum
and astro, and electronics. Depending on your background, recognition of different aspects of
what is presented in this paper will vary. This paper is written for people with a scientific
background to understand what underlies the phenomena and how to drive it. Understanding
the phenomena requires integration of many concepts across the fields mentioned above. There
are some systems that may operate on different principals and have not yet been analyzed
relative to the Quantum Fusion hypothesis. Edmund Storms’ plasma discharge work may fall
into this category. I believe that the Quantum Fusion hypothesis is correct for many of the
systems this community has been investigating. Details may be found on-line in Ref [1].

Testing the hypothesis
Profusion Energy built and ran several prototype reactors in open beakers in a partially

controlled environment. Tests used both electric heaters and copper reactor cores for
comparison. Systems with nickel or palladium cores can always outperform both electric
heaters and copper core devices regardless of the position in the testing environment.

Typical results
Figure 1 shows a 0.05 mm Pd core system outperforming an electric heater. All power into

the Quantum Fusion reactor is considered strictly as power into the beaker. The loss caused in
the generation of oxygen and hydrogen gas was ignored. The power drawn off of the Q or
Quantum compression supply (Q power discussed later) was calculated as power into the
beaker even though the circuitry generated significant heat outside the beaker. The Quantum
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Fusion system still outperformed the electric heater, which turns every watt second of power
into 1 joule of heat energy.

Figure 1. A 0.05 mm Pd core producing more heat than an electric heater.

Molecular Hamiltonian
In atomic, molecular, Quantum, and optical physics as well as in quantum chemistry,

molecular Hamiltonian is the name of the operator representing the energy of the electrons and
nuclei in a molecule (to be taken as the trapped nuclei and lattice elements in a unit cell of the
matrix running the reaction). This equation plays a central role in computing properties of
molecules and aggregates of molecules such as conductivity, optical, and magnetic properties,
and reactivity. By quantizing the classical energy in Hamilton form, one obtains a molecular
Hamilton operator. This Hamiltonian is a sum of 5 terms1. This was a handy starting point but
is used to describe systems in equilibrium. When the molecular system is moved away from
equilibrium, nonlinear effects begin to dominate.

In general, evaluation of a Hamiltonian results in another function. The function of the QF
Hypothesis includes terms not previously included in a Hamiltonian because QF addresses a
system far from equilibrium. In the solution space of this expanded Hamiltonian there are
absolute values greater than 782KeV and up to 9.3 MeV. You may recognize 782KeV as the
mass difference between the sum of a proton and an electron and the mass of a neutron. At first
glance 9.3 MeV may seem preposterous, however it is no more preposterous than 80+GeV for
the well-accepted W bosons. The energy is concentrated by virtue of being a compression
function. Deuterons may require up to 3 MeV and Tritons up to 9.3 MeV.

1 The sum of all kinetic energy operators for each nucleus, electron, electrons and nuclei
interaction, electron- electron interaction, and nuclei-nuclei interaction in the system
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Material science
The elements and materials that support the Fleischmann-Pons Effect have the following

shell similarities in common. They have a full or nearly full Dn shell and an empty or at least
room in the S(n+1) shell. Palladium is the only element in the periodic table with a full Dn shell
D4 and an empty S(n+1) or S5 shell in the ground state. I believe that this S(n+1) orbital energy
well represents the trapping points that hydrogen occupies in the materials that support the
Fleischmann-Pons Effect. Hydrogen will pass through palladium but helium will not. As atoms
go, helium is about ½ the size of hydrogen, yet it will not pass through palladium and hydrogen
will. It has been shown that hydrogen actually enters with a fractional charge or less than one
electron per hydrogen nuclei entering the lattice. One way to visualize the transport of
hydrogen through palladium is as an external gear pump mechanism.

The tear dropped shaped P orbitals act like the teeth of an external gear pump and the D
orbitals in combination with the lattice nuclei act as the casing. There is only room for a single
hydrogen nuclei in-between each set of P orbital teeth. The walls of that “space” are a
combination of electrostatic repulsion of the lattice nuclei and the P(n) D(n) electron wave
functions. Hydrogen nuclei can easily tunnel to an adjacent lattice element site in palladium
providing extraordinary mobility within the palladium lattice. Given this extraordinary
mobility, it is inconceivable that two hydrogen nuclei would occupy the same octahedral point
and fuse at a loading ratio of less than 3. What trapping in the octahedral points does do is limit
the uncertainty or standard deviation of the position of the hydrogen nuclei. All the hydrogen
loving lattice structures that support the transmutation of elements have this trapping capability.

Heisenberg uncertainty formula
As it turns out, the greater than symbol used in the Heisenberg uncertainty formula is correct.

If one variable is forced to an extremely or a “super” low value, the uncontrolled variable
becomes large. In a Bose-Einstein condensate, super cooling a cloud of evaporated atoms
achieves a very small p or uncertainty of momentum or energy. To satisfy p q or
uncertainty of momentum times uncertainty of position > h / 4 (Heisenberg Uncertainty
Principle), a very large q or uncertainty of position occurs and if the atoms follow Bose
statistics, a Bose-Einstein condensate is formed. The atoms assume the same quantum state and
can overlap or be in the same place at the same time. When this happens, the atoms become
indistinguishable from each other and behave as a single super atom. It is possible to see a
collection of only a few thousand atoms with an unaided eye because the standard deviation of
position is very large. To reliably control the PF reaction, one must supply what the patent
application describes as Heisenberg Confinement Energy or super confinement of the nuclei,
forcing a very small q or uncertainty in position, affecting a large p (energy). This is the first
new additional term to the Hamiltonian describing how QF works.

Non bonding energy
The term non-bonded energy is the second term added to the Hamilton describing QF. This

term refers specifically to atoms that are not bonded to each other in a molecule. The non-
bonded energy accounts for repulsion, van der Waals attraction, and electrostatic interactions.
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Van der Waals attraction occurs at short range, and rapidly dies off as the interacting atoms
move apart by a few Angstroms. Repulsion occurs when the distance between interacting atoms
becomes even slightly less than the sum of their contact radii. The hydrogen in the lattice is not
bonded and actually causes some deformation of the lattice on entry, indicating that it has
forced entry into the portion of the equation controlled by a factor of 1/r12. It is the 1/r12 effects
driven by phonons. Phonons are bosons and can be in the same place at the same time, driving
electron capture events. This second new term to the Hamiltonian drives the Fleischmann-Pons
Effect.

Q Energy
In Profusion Energy’s work to date, both the non-bonded energy and Heisenberg

Confinement energy are driven by what Profusion Energy calls Q or quantum compression
energy. This is used to stimulate super confinement waves in the lattice.

The primary Q pulse delivers the bulk of its power in ~100ns achieving a peak current
density of over 7 thousand amps per square mm. The polarity of the Q pulses alternate to limit
the degrading effects of electromigration on both the core material lattice elements and the
hydrogen in the core. The portion of Q power reported as going to the beaker is calculated as
½*C*V2 *repetition rate. ½*C*V2 is the energy or joules contained in the capacitor being
discharged across the wire and repetition rate is times time or the joules per second which
equals Watts. A Quantum Fusion reactor uses Q waveforms to force the value of the Molecular
Hamiltonian. Once the value is high enough to supply the mass energy difference between a
hydrogen ion plus an electron and the mass of a neutron or neutron cluster, that energy converts
to mass in an electron capture event. A large number of hypotheses have been put forward to
correlate the production of tritium and helium with heat. Accusations that it could not be fusion
due to the lack of Gamma rays and fast neutrons were almost instantaneous. I propose that the
QF Hypothesis can account for all the Fleischmann-Pons Effect experiments and some of the
other excess heat experiments such as Bubble Driven sono fusion style devices, laser activation
of metal hydride systems and gas load plus heat systems. This reaction is not fusion as the
current establishment defines it. The perceived reaction is not DD.

What is Quantum Fusion (QF)?
When the system energy or molecular Hamiltonian achieves or exceeds the energy necessary

to make up the mass difference between a hydrogen ion plus an electron and the mass of a
neutron or neutron cluster, the hydrogen nucleus undergoes an electron capture event as a
natural energy reduction mechanism. This highly endothermic reaction, in combination with
the dispersion of the phonons that caused the increased confinement, results in a cold to ultra-
cold neutron and/or neutron cluster. Neutrons are attracted to each other but the attraction is not
strong enough to be “bound”. At energy levels of a few meV (38 meV is roughly 70F or
21C), the Brownian motion will shake the multi neutron systems apart. However, a deuteron
that has just converted up to 3 MeV of energy or a triton that has just converted up to 9.3 MeV
of energy to mass has an extremely low energy level. The energy level is low enough that the
neutrons remain together long enough to interact with another hydrogen nucleus moving
through or into the lattice location occupied by the newly formed neutron or neutron cluster.
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With the removal of the proton’s charge, it is possible for a new hydrogen nucleus to enter the
same trapping point and bond with the neutron or neutron cluster. This is similar to concepts
used in astrophysics and referred to as the S and R process that build the heavier elements
inside of stars through accumulation of neutrons and β− decay. In QF cold to ultra-cold
neutron(s) interact with another hydrogen nucleus moving through the lattice, resulting in 4H.

Part of the problem for established physics is that their information is based on big science
accelerator experiments. This led to a policy at the National Nuclear Data Center (NNDC) that
defines the “ground state” of a nucleus as the “lowest energy at which it has been observed”.
The first three links you are likely to run across at the NNDC in relation to 4H indicate that it
undergoes a 100% neutron ejection decay path, even at what they have arbitrarily defined as the
“ground state”. Another document, mass.mas03.txt states the mass of 4H as being greater than
the mass of tritium + a neutron. This was referred to as an un-bound nucleus. (Meaning what?)

Researchers extrapolated the path of a neutron and a triton back to the same point. For 4H
that time of existence is so short it is given as a width of 4 MeV. That calculates out to roughly
10-24 seconds, more precisely 82.28 yocto-seconds after an 8 MeV neutron collides with a 7Li
nuclei. I have discussed this with J. H. Kelly of the National Nuclear Data Center (NNDC). He
assured me that this was the absolute lowest energy level at which you could possibly create
4H. (Does this sound like the ground state?) When 4H is formed as an early intermediate decay
product from a high-energy collision, there is sufficient momentum to make it energetically
favorable for a neutron to carry the excess energy away before β− decay occurs. In a metallic
lattice where low energy neutrons accumulate, β− is the decay path. Papers compiled in NNDC
do indicate this. (The data is somewhat difficult to access. To retrieve it, go to
http://www.nndc.bnl.gov/ensdf/, enter 4H in the Quick search: box, and click “Search”. Click
the check the box next to the 4H and click “HTML”. See the first sentence in the data sheet.)

According to Kelly, if there were some way to make 4H at a low enough energy (≤3.53 
MeV), then it would undergo β− decay. That can’t be done in an accelerator. When solid-state
systems produce 4He, each helium nucleus formed liberates between 23.2 MeV and 27.5 MeV
depending on the exact path taken.

Gross loading
Existing attempts to harness the Fleischmann-Pons Effect depend on what I call Gross

loading. By achieving a loading ratio greater than 0.85, the movement of hydrogen ions is
limited by the number of open octahedral points. It also moves the lattice away from
equilibrium and raises the base level result of the Hamiltonian operator. Why don’t all
palladium samples work once the loading ratio exceeds 0.85? Researchers have talked about
the grain structure and cracking. Wave phenomenon or phonons are reflected and refracted by
grain boundaries and cracks or discontinuities. The Nuclear Active Environment is one where
enough phonon peaks intersect to obtain the 1/r12 + Heisenberg confinement energy necessary
to affect electron capture events. Typical gross loading problems are driven in part by the
quantity of hydrogen present in the lattice when the reaction starts. The bonding energy
released in the formation of helium or transmutation causes a local chain reaction release of
energy that eventually destroys the mechanical structure that was supporting the reaction.
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Quantum Fusion (QF)
Quantum Fusion avoids these problems by explicitly driving the required phonons or

displacement of the lattice elements. By performing this in an explicit manner, it is possible to
run the reaction at a very low level and low loading ratio. At this point Profusion Energy has
not yet ascertained the minimum (loading*phonon level) necessary to run the reaction but the
systems appear to begin producing excess heat as soon as they are activated. Another aspect
that leads me to believe that the Fleischmann-Pons Effect is driven by rogue or super waves
causing electron capture events is the system response to Q repetition rate. As the Q repetition
rate is adjusted up, the reaction has peaks and then rolls off before picking back up to a higher
peak as the repetition rate continues to increase. The current hardware has a maximum Q
repetition rate of 100KHz but the best results obtained are below that frequency. The patent
applications show a number of different ways to build a practical reactor but systems to date
have been built using wire cores and fast current pulses for the Quantum Compression.

Most of the scientific community agrees, it is not possible to overcome the coulumbic
repulsion of hydrogen within a metallic lattice. However as I have just outlined, it is not
necessary to overcome columbic repulsion. This is not fusion as currently defined.

The Quantum Fusion Hypothesis not only explains the reaction but points to multiple ways
of making industrially useful devices by controlling the underlying physics.

References
1. R. E. Godes, The Quantum Fusion Hypothesis, Profusion Energy Inc., September 2008

www.profusionenergy.com/PhaseIVerificationData/ProfusionEnergyHypothesis.pdf



579

Excitation Transfer and Energy Exchange Processes for
Modeling The Fleischmann-Pons Excess Heat Effect

Peter L Hagelstein1 and Irfan U Chaudhary2

1Research Laboratory of Electronics,
Massachusetts Institute of Technology, Cambridge, MA

2Department of Computer Science and Engineering,
University of Engineering and Technology, Lahore, Pakistan

Abstract
The absence of energetic particles commensurate with the energy produced is
the single most notable feature of the Fleischmann-Pons experiment for theory,
assuming that a new nuclear process is involved. We discuss briefly energy
exchange between two-level systems and a low energy oscillator, concluding
that spin-boson models augmented with loss are able to describe coherent
energy exchange involving a large number of oscillator quanta. Since the
coupling between deuterons and the lattice is weak, the excitation must be
transferred to a different system with stronger coupling, in order to develop a
simple model relevant for heat production. The resulting toy model can be used
for simulation, and we describe briefly ongoing efforts to develop a
computational model.

Introduction
The Fleischmann-Pons effect consists of excess heat production in experiments where

palladium cathodes are electrolyzed in heavy water; the amount of energy measured in such
experiments is much too large to be of chemical origin; and energetic particles commensurate
with the energy produced are absent. When first described in 1989, the response of the
scientific community was one of skepticism and disbelief. Early efforts to confirm the effect
were largely unsuccessful, due to a lack of understanding as to what are the critical issues.
Subsequent experimental work in the following years has provided enough confirmations that
the effect is at present held to be real among researchers who work in the area.

There is at present no accepted theoretical explanation for the effect. Since the inception of
nuclear physics in the early 20th century, nuclear reactions have been understood in part
through the concept of local energy and momentum conservation. In an exothermic nuclear
reaction, the net energy produced is expressed in terms of energetic particles. No nuclear
reactions are known in which most of the energy produced goes into other channels.

However, this foundation of nuclear physics is precisely what is challenged in the
Fleischmann-Pons experiment. Hence, the primary theoretical focus, if one accepts that the
energy is of nuclear origin and that commensurate energetic particles are not present, must be
on physical mechanisms that lead to a violation of local energy and momentum conservation
(while conserving overall momentum and energy).
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Energy exchange
There is some experimental support for a reaction Q-value of 24 MeV per 4He atom observed

in the gas phase, in experiments where an effort was made to scrub the helium out of the
cathode [1,2]. This directs our attention to mechanisms in which two deuterons (as fuel)
combine to make 4He (as ash), where the mass difference (24 MeV) is to be converted to a very
large number of lower energy quanta. Experiments have been reported recently in which
cathodes have been observed to respond to laser beat frequencies at 8 THz and 15 THz (and
also 20 THz), which correspond to the optical phonon band edges of PdD (and also PdH) [3];
these are modes with zero group velocity. This motivates us to consider optical phonon modes
as oscillator modes involved in the energy exchange process.

The theoretical problem to be addressed, then, is how a large energy (24 MeV) quantum can
be split up efficiently into a very large number of small energy (33 or 62 meV) quanta. We
have studied models in which two-level systems with a large transition energy (representing
local molecular D2 and 4He states at vacancy sites in the PdD lattice) couple to a low energy
harmonic oscillator (representing optical phonon modes with low group velocity). Such models
at first glance appear to be closely related to spin-boson models that appear in the literature in
connection with NMR, cavity QED, and other applications. When a two-level system is
coupled to an oscillator with much lower characteristic energy, then the models predict that
energy can be exchanged between the two systems. For this to occur, the resonance must be
very precise, and the resulting energy exchange rate is very slow. In the end, one would not
expect to see more than about 100 oscillator quanta exchanged for a two-level system quanta,
due to the weakness of the energy exchange effect in the multi-quanta limit.

Figure 1. Two-level systems coupled to a
harmonic oscillator, in a many-spin spin-

boson model.

However, if we examine the many-spin version of the spin-boson problem, we find that
energy exchange is hindered by destructive interference effects between the different individual
pathways involved. If this destructive interference is spoiled, then the rate of energy exchange
is greatly enhanced, and the number of oscillator quanta that can be exchanged with a two-level
system is increased dramatically. Spin-boson models augmented with loss exhibit greatly
increased energy exchange rates. An example of this is discussed in the Appendix. Such models

E

0
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allow energy exchange between low energy oscillators and energetic two-level systems that is
sufficiently rapid to account for the kind of energy exchange required in Fleischmann-Pons
experiments, at least in principle.

Excitation transfer
The use of spin-boson models requires an estimate for the coupling matrix elements between

the two-level system and the oscillator. To apply this kind of model to describe nuclear
transitions involving phonon exchange, we require an estimate for the associated matrix
element. There is no difficulty in principle with a direct computation of the matrix element
between molecular D2 and nuclear 4He states in the lattice, including phonon exchange [4].
However, we know that this matrix element is small due to the presence of a Gamow factor
associated with tunneling through the Coulomb barrier. Many-spin spin-boson models
augmented with loss require the coupling to be strong in order for the energy exchange process
described above to function. As a result, the simplest possible models for energy exchange
cannot work in the case of direct transitions between D2 and 4He.

Consequently, we seek a modification of this basic model. In recent years we have focused
on models involving two different sets of two-level systems, both coupled to a common
oscillator. One of these sets of two-level systems is strongly coupled to the oscillator, and the
other is assumed to be weakly coupled to the oscillator. The basic idea in this kind of model is
that the excitation associated with the weakly-coupled two-level systems is transferred over to
the strongly-coupled two-level systems, where many-quantum energy exchange can occur [5].
This is indicated schematically in Figure 2.

Figure 2. The D2/
4He system

(modeled as a set of equivalent
two-level systems) is weakly

coupled to a low energy oscillator.
A second set of two-level systems
(indicated as the receiver system)

is strongly coupled to the
oscillator.

Computations done to date indicates that the basic scheme seems up to the task of modeling
the Fleischmann-Pons excess heat effect, as long as the associated many-spin model is
augmented with loss (which greatly accelerates the excitation transfer process as well as the
energy exchange process). The enhanced excitation transfer rate is sufficiently fast in the case

D2

4He

Optical phonon mode

Receiver
system
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of the weak coupling matrix element associated with the D2-
4He transition to be consistent with

experiment (as long as substantial screening effects comparable to those estimated by Cserki
and coworkers [6] for PdD are included).

However, input from experiment does not tell us what the relevant physical states are that
correspond to the strongly-coupled two-level system on the receiver side. There are at least two
plausible candidates which seem to have theoretical support and are not inconsistent with
experiment:

One possibility is that nuclear states of the host lattice participate. In this case, the ground state
of the two-level system would correspond to the ground state of neutron rich isotopes of the
host (such as 110Pd). The upper state would correspond to an exotic nuclear state in which a
neutral cluster (such as 4n) separated from the daughter nucleus (106Pd) by about 10 fm, perhaps
with some angular momentum. Such a state would be favored by the selection rules associated
with coupling to the lattice (phonon exchange in association with nuclear excitation in general
seems to be a weak effect, that becomes much stronger in the event that the lattice “sees” a
mass change of the nucleus). Whether this kind of state can be sufficiently stable to do what is
required within the context of the model has not been demonstrated.

Another possibility is that nuclear states similar to those of the D2-
4He two-level systems

participate. In this case, the 4He ground state would match the ground state of the receiver-side
two-level systems. The excited state in this scenario would be a compact molecular D2 state,
formed by a competition between production (where the source involves creation at fermi-level
separation) and destruction (where transitions back down to the ground state occur sufficiently
rapidly to prevent D2 separation out to 0.74 Angstroms). As long as the reduced D2 separation
was sufficiently large so that the difference in the electronic wavefunctions is significant
(ultimately leading to phonon exchange), and conventional fusion pathways occurred
sufficiently slowly so as not to drain off the excitation, then such a state would be able to fulfill
the functional requirements of the model.

Simulation model
The development of an idealized microscopic model for excitation transfer and energy

exchange allows us to consider using it in the context of a simulation model. A picture has been
in the process of emerging over a great many years which seems to be consistent with many
experiments, and which seems to be consistent with the requirements of the microscopic model.

In this picture, deuterium is loaded into Pd so that the associated chemical potential becomes
high enough to support vacancy stabilization (which occurs near a D/Pd ratio of 0.94). At this
loading, Pd that is codeposited will have a large number of single-atom vacancies. There is the
possibility that vacancies can diffuse from the outer surface, but the associated kinetics are
expected to be slow unless there exists an enhancement under conditions where a deuterium
flux is present. In the basic Fleischmann-Pons experiment, the formation of the vacancies is
thought to require about a month (and a much shorter time in the Szpak experiment). The
loading and vacancy stabilization can be simulated from information available in the literature;
to model the surface vacancy distribution requires knowledge of the rate of codeposition, or
enhanced vacancy diffusion rates.
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We conjecture that -bonded dideuterium [7] (essentially molecular D2) forms in the
vacancies at more modest loadings. These are the active sites, which occur in the outer
(micron-scale) region of the cathode. Dideuterium formation can be modeled using simple
statistical mechanics given an estimate of the binding energy. Excitation transfer is then
stimulated by phonon exchange with compressional phonon modes (the matrix element
between D2 and 4He couples predominantly to compressional phonon modes) that are highly
excited. Phonon excitation in this picture is produced by the deuterium flux through the near-
surface of the cathode. Energy exchange occurs in the presence of high compressional optical
phonon excitation in the case of assumed 4He-compact D2 states (which at present seems to
match experiment best). The simplified model described above consisting of two-sets of two-
level systems to account for the nuclear states, and a harmonic oscillator (augmented with loss)
to model optical phonon modes, can be used to develop equations describing the associated
coherent dynamics for the simulation model.

As energy is produced, 4He accumulates in the active sites. At first, this would be helpful as
there would be more capacity for anomalous energy exchange, since in general there is little
helium present initially. However, as more energy is produced, we expect helium to block
active sites, since the diffusion of helium away from the active sites is very slow near room
temperature. In the event that helium diffusion limits excess heat production, we would expect
to see a strong temperature dependence associated with excess heat production (as has been
reported in a number of experiments [8]). With an appropriate simulation model, we can model
this effect, and compute the fraction of helium released into the gas.

We have begun the development of the simulation model outlined above. The results
obtained so far seem to be interesting, and we hope to compare our results with experiment in
the coming months.

Appendix
Consider the enhancement of multi-quantum coherent energy exchange in a many-spin spin-

boson model augmented with loss. We take the Hamiltonian to be of the form

Where the first term in the Hamiltonian describes the energy of the two-level systems, the
second term describes the oscillator, the third term implements linear coupling, and the final
term accounts for the loss added to the model. The model is discussed further in [9].
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Figure 3. Energy levels that contribute to indirect coupling between |M,n and |M+1,n-5 in the case of
multi-quantum exchange involving 5 quanta.

The impact of loss on energy exchange can be illustrated through a concrete example. We
consider a finite basis solution constructed from a combination of 12 basis states composed
individually of products of Dicke states and oscillator states

,j j j
j

c S M n  
We consider indirect coupling from an initial state |M,n to a final state |M+1,n-5, in which a
single two-level system excitation is matched to a loss of 5 oscillator quanta. The states are
illustrated in Figure 3.

If no loss is present, the indirect matrix element between the initial state and the final state
can be found to lowest-order in perturbation theory to be
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If loss is present and large for all intermediate states with a basis energy less than E, such that
the associated paths do not contribute, then the indirect coupling matrix element is
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For modest S the enhancement in indirect coupling is orders of magnitude. Loss breaks the
destructive interference between the contributions from different pathways, and results in a
dramatic increase in the indirect coupling responsible for coherent multi-quantum energy
exchange.
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Excess heat in the Flesichmann-Pons effect constitutes a new physical effect
unlike other physical processes with which we are familiar. Many groups have
proposed theoretical mechanisms to account for the effect, but at present none
has been generally accepted. This motivates us to review what experiment tells
us about theory. There exists a relatively large body of experimental results, and
it is possible to connect many of these individual results to theoretical statements,
which might then be used as the basis for the development of new theoretical
models.

1. Introduction
Nuclear physicists have studied deuteron-deuteron fusion over the years using energetic

deuteron beams incident on different targets that contain deuterium. Local conservation of
energy and momentum dictates that in an exothermic reaction, the reaction energy is expressed
in the kinetic energy of the reaction products. As a result, we know what the primary reaction
channels (p+t and n+3He) are, since the reaction products can be observed directly. The particle
energies and angular distributions are also available directly from experiment. A theoretical
model for the deuteron-deuteron reaction follows directly from solving the Schrodinger
equation (approximately) for the relevant four-body problem, with two deuterons in the input
channel, and with p+t and n+3He in the exit channels. The results from such models are in good
agreement with experiment.

Because the associated theoretical problem is so simple, at least conceptually, one would not
imagine that there could be anything that could compete with the primary reaction mechanism,
or change fundamentally what happens when two deuterons interact. The excess heat effect in
the Fleischmann-Pons experiment seems not to follow this clear and simple picture. As such, if
the experiments are right, then they suggest that something else can happen. In the decades
following the announcement of the excess heat effect, there have been a great many positive
experiments which seem to confirm the existence of the effect. Hence, we are faced with the
theoretical problem of figuring out how the effect works.

We might turn to nuclear physics and solid-state physics, both mature disciplines, in order to
develop a theoretical model. Unfortunately, over the years no one has had much luck
convincing their colleagues that a suitable explanation can be obtained from such a starting
place. Moreover, such a model if developed would not be accepted without very strong
experimental support. In the end, one must understand theory through an experimental
foundation. We only know what happens because we can observe it in an experiment.
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This presents a serious issue when we address the Fleischmann-Pons experiment. The basic
effect is nuclear, yet due to the absence of commensurate energetic nuclear particles, we are not
able to study the primary reaction mechanism directly as we can in the case of deuteron-
deuteron fusion. This provides us with the motivation to re-examine the experiments in order to
understand better what we can learn about theory.

2. Excess heat effect
The excess heat effect is observed as a temperature increase in heavy water electrochemical

experiments where palladium cathodes are loaded with deuterium. The increase in temperature
appears to be due to power generation in the palladium cathode. Perhaps the most important
question regarding the excess heat effect itself is whether or not it is real.

The first report of excess power in association with PdD electrochemical experiments was by
Fleischmann, Pons and Hawkins [1]. Unfortunately, this work was not well written, and the
discussion provided was insufficient to allow for replication in general; this resulted in a large
number of subsequent negative results early on (see [2] as an example). Confirming
experiments were reported subsequently by Fleischmann and Pons [3]; by the SRI effort [4]; by
Storms [5]; and by many other groups around the world. By now, there have been reported
more than 100 observations of excess heat in Fleischmann-Pons experiments.

2.1. Energy
Much discussion has been devoted to the issue of excess energy in the experiments. In the

basic Fleischmann-Pons experiment the Pd cathode must be charged for a month or so prior to
the observation of excess power events. As a result, it has been argued that the energy produced
in the bursts is small compared to the input energy, so that there may be no net energy
production, but only the release of stored power not accounted for during charging.

We note that in the experiment reported in [3] the excess power integrated over a roughly
100 hour burst event was comparable to the total input energy, so that the total output energy
was roughly twice the input energy. A hypothetical storage mechanism for this experiment
would need to accommodate 4 MJ in 0.157 cc of cathode; which can be compared to the 1.2 kJ
energy release which would be produced by the detonation of an equivalent volume of the
explosive TNT. This argues strongly against any conventional storage mechanism.

Other experiments have been reported with higher energy gains. Swartz has claimed
reproducible energy gains over 250% using the method described in [6]. The Energetics team
reported in 2003 an observed energy gain of 6.7 in a glow discharge experiment [7], and in
2004 an observed energy gain of 25 in an electrochemical PdD experiment [8]. The conclusion
from these experiments and others is that net energy is produced, and that the energy storage
argument is inconsistent with experiment.

2.2. Power density
To determine the associated power density, we require information about what part of the

cathode is active. One relevant observation (to be discussed below) concerns the emission of
4He (as ash) into the gas stream, which could only occur if the helium were created within
about a micron from the surface. In the Szpak experiment, Pd is co-deposited on a copper
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substrate, and excess heat is observed [9]. The observed power per unit area is on the order of
80 mW/cm2, and the corresponding power per unit Pd volume is in the range of 160-800
W/cm3 for an active Pd thickness estimated to be in the range of 5 m to 1 m. In some
experiments significantly higher numbers can be estimated. For the experiment described in
[8], the power per unit area reaches about 4 W/cm2, which corresponds to about 8 kW/cm3 if
we assume a 5 micron active thickness. There is evidence for hot spots [10] and localized
surface melting in some experiments [11].

2.2. Loading, current density and flux
There appear to be two different requirements on deuterium loading. In the SRI experiments,

the cathodes need to achieve a loading of about 0.95 (deuterium atoms per palladium atom) for
excess heat to be observed at all [12]. A cathode which has achieved this during the roughly
month-long charging period then later on needs to be loaded above a threshold near 0.85 to
produce an excess heat burst. In many experiments [13-15] there has been observed a linear
dependence of the excess power on current density above a threshold as first described by
Fleischmann and Pons [16].

Excess power in Fleischmann-Pons experiments is dependent on the deuterium flux in the
cathode. Although this is implicit in the ideas presented by Fleischmann on the Coehn effect in
ICCF4 [17], it was first noticed in connection with a Fleischmann-Pons experiment at SRI,
where the excess heat seemed to increase when a cathode spontaneously went into a breathing
mode. This led to an empirical relation [18] for the excess power Pxs

   
2

0 0-xs

dx
P I I x x

dt


where I is the current and x is the loading. Subsequently, experiments reported by Li and
coworkers have taken advantage of deuterium flux [19], and also by Arata and Zhang [20].

2.3. Temperature
Fleischmann and Pons noticed that the excess heat increased following the application of a

resistive calibration pulse to their cell, which suggested that they could take advantage of the
effect to achieve higher power operation [21]. Somewhat later, Storms observed a dependence
of excess power on temperature of the form

/
0

BE k T
xsP P e

where E was reported as 15 Kcal/mole, or 670 meV [22].

This dependence is not seen in all experiments. It has been suggested that since the
observed E is close to that for helium diffusion in Pd, that this temperature dependence may
be associated with helium accumulation in active sites in experiments with high local excess
power per unit volume.

3. Helium
In association with the press conference in March 1989, Fleischmann and Pons apparently

claimed that helium had been observed in association with the excess heat effect. Subsequent
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measurements did not provide a confirmation, and the issue of helium production subsequently
has been contentious.

3.1. Detection in the gas phase
A significant step forward was made with the observation of 4He in the gas phase by Miles

and Bush [23]. Prior to this, a great deal of effort had been focused on searches for elemental
and isotopic anomalies in the Pd cathodes, as well as for trapped helium, with few positive
results. Since the excess heat effect has no accompanying energetic particles, one could not
learn much about reaction mechanisms or possible products, and all elements and isotopes were
potential suspects. Helium as a reaction product had been considered previously, but was
expected to be trapped in the metal if it was produced. That it might be observed in the gas was
unexpected.

Subsequent work has largely confirmed the presence of 4He in the gas outside of the cathode
in Fleischmann-Pons experiments [24]. At ICCF6, Gozzi presented some striking results that
appeared to show that heat bursts were time-correlated with 4He bursts in the gas phase [25].

3.1. Mass difference, helium in the gas, and retention
Helium as a product has been of interest since the Fleischmann-Pons experiment requires

deuterium, and two deuterons contain two protons and neutrons which is the same as 4He. The
mass difference is

E[dd] – E[4He] = 23.86 MeV

If the excess energy was produced through a physical process in which deuterons interacted
somehow to make 4He, then one should be able to tell from a comparison of the energy
produced per 4He atom detected. In Gozzi’s experiments, the ratio of 4He atom detected seemed
to vary from burst to burst in the range of 10% to 100% of that expected from the mass
difference. A possible explanation for the results observed was that the helium was produced
initially near the cathode surface, so that it could get out; but different amounts would be
released during particular events. The missing helium was assumed to remain inside the outer
surface of the cathode.

3.2. Energy per 4He
In an experiment carried out at SRI, excess heat was observed in a calorimeter that was

helium leak tight, and 4He was measured. The amount of helium measured was 62% of that
expected based on the 23.86 MeV mass difference. Subsequently an effort was made to recover
the helium remaining in the cathode; this was done through cycling deuterium in and out of the
cathode. More helium was captured, and in the end the ratio of energy to 4He was observed to
be 104% of the 23.86 MeV mass difference with 10% error [12]. This result is supported by the
measurements reported in [26]. In two of the experiments reported, the amount of 4He detected
was low (about 51% and 69%, taking into account the background) of the amount expected
based on the mass difference. However, in another experiment (Laser-3) an attempt was made
to recover the helium remaining in the cathode [27], and the result was that the amount of
helium observed was slightly over 100% of the expected amount. Hence, the two experiments
reported to date in which helium recovery was attempted both give results in agreement with
the mass difference within experimental error.
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4. Laser stimulation
Letts and Cravens [28] found that an excess heat could be triggered in a Pd cathode near

threshold with a laser beam at low intensity. In these experiments, an incident diode laser beam
of 30 mW was shown to lead to excess power levels in the range of 200-800 mW. Polarization
dependence was observed, which was later studied by the ENEA group [26]. It was found that
p-polarized light (with electric field partly normal to the surface) could stimulate excess heat,
but s-polarization (with electric field aligned with the surface) was ineffective. This is
consistent with coupling to compressional plasmon modes. In the Letts and Cravens
experiment, a thin gold coating is deposited on the surface, with a surface plasmon resonance
expected near the frequency of the incident light.

At this conference, Letts presented results for dual laser stimulation where the excess heat
was found to respond to the beat frequency [29]. Strong responses were found at three
difference frequencies (8.3 THz, 15.3 THz, and 20.4 THz), the first two of which can be
associated with the k=0, or zero group velocity, optical phonon frequencies of PdD (the 20.4
THz frequency matches the upper k=0 frequency in PdH, but as yet there is no experimental
evidence to support this). Once again, the dual laser beating effect is sensitive to laser
polarization, and requires both laser beams to be oriented with p-polarization.

5. Connection with low-level nuclear emission
There has been much discussion over the years as to whether the low-level nuclear emissions

which have been reported are related to the excess heat effect. Attempts to detect nuclear
signatures at the time of an excess heat event have yielded no commensurate signals, and
generally no low-level signals [30].

In Fleischmann-Pons experiments, excess heat is reported at relatively high current density
(200-1000 mA/cm2), while neutron emission tends to be seen at much lower current density
(10-30 mA/cm2). In [31] results from experiments that were run using Takahashi’s high-low
current protocol showed that cathodes which produced excess heat (and no neutron emission) at
high current density, also showed low-level neutron emission (and no excess heat) at low
current density. Such observations indicate a connection, in this case an anticorrelation.

5.1. Low-level deuteron-deuteron fusion
Evidence for low-level neutron and proton emission consistent with deuteron-deuteron fusion

has been put forth over the years. Jones first reported the effect in TiD in 1989, and subsequent
measurements after 1989 have provided confirmation (some of this work is reviewed in [12]),
and evidence that deuteron-deuteron fusion reaction products are seen in Fleischmann-Pons
experiments in PdD at low current density.

5.2. Other energetic emissions
Cecil and coworkers have claimed the observation of low-level energetic particles from TiD

up to and beyond 10 MeV [33,34], as well as protons consistent with deuteron-deuteron fusion.
Lipson and coworkers have reported repeated observations of low-level nuclear emissions from
PdD included protons near 3 MeV (consistent with deuteron-deuteron fusion), as well as alpha
particles between 10 and 20 MeV [35,36].
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5.3. Karabut’s x-rays
Karabut has reported the collimated emission of x-rays between 1-1.5 keV from Ti and Pd

cathodes in glow discharge experiments run in deuterium, as well as in other gases [37,38]. The
x-ray energy from energy-integrated absorption appears to be correlated with the cathode
metal, and discharge voltage. Ti and Pd do not have fluorescence lines in the range. These
observations raise the possibility that the emission is of nuclear origin, and that the collimation
arises from local phase coherence among the emitters (the collimation is observed to be normal
from the cathode surface). It seems implausible that phase coherence could be established in
the case of electronic transitions.

6. Relevant beam experiments
There are at least two different kinds of beam experiments that have been done with metal

deuterides that are of note in this discussion. One of these addresses the question of screening,
and the other concerns localization.

6.1. Screening
There was much discussion about the impact of screening between deuterons in metal

deuterides back in 1989, with the general consensus that significant screening effects would not
be expected in PdD. However, low-energy deuterium beam experiments over the past decade
has shown strong screening effects for deuteron-deuteron fusion reactions in metals in general,
and particularly strong screening in PdD in particular [39,40].

6.2. Kasagi effect
In the mid-1990s, Kasagi and coworkers described beam experiments (in TiD and in PdD)

where broad energetic proton and alpha signals were observed. Normally, deuteron-deuteron
fusion produces two-body products, such as p+t and n+3He. In this case, the reaction energy is
sharp, with the reaction energy apportioned inversely to the mass. In a secondary reaction such
as t(d,)n, there is a spread in the alpha energy due to the initial 800 keV energy of the triton.
However, in the experiments described in [41], a much broader alpha and proton signal was
seen. Such a broad signal could only come about from a three-body exit channel, which in this
case was attributed to n+p+. The particles and end-point energies in this case are consistent
with a three-body reaction d+d+d → n+p+, which would require two of the deuterons initially
within the same to be localized on the 10 fm scale.

7. Discussion
Based on the discussion above, which is incomplete both in scope and in citations to the

relevant literature (by necessity given the limitations of a proceedings paper), we can begin to
discuss what experiment provides as input to theory. Perhaps the most significant feature is that
experiment seems to support the notion of a new kind of nuclear reaction in which the reaction
energy is not expressed through the kinetic energy of the products. This statement is very
significant, in that as commented on above, local conservation of energy and momentum
require that energetic particles result from an exothermic reaction. No such process has been
observed previously in nuclear physics. We note that among those working on excess heat in
the Fleischmann-Pons experiment, that many are convinced even now that commensurate
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energetic particles are produced, only to have escaped detection so far. Future experiments that
address upper limits on the energy of possible reaction products would be helpful in this
discussion.

As to what it is that reacts, there is no general consensus at this time. However, deuterium
seems implicated (since for the most part no excess heat is reported with Fleischmann-Pons
experiments using Pd cathodes and light water), and the correlation of 4He with the energy
produced implicates it as the ash. The two experiments in which an effort was made to account
for retained 4He give results consistent with 24 MeV per 4He, consistent with the mass
difference between two deuterons and 4He. However, there is agreement among a subset of
workers that the mechanism involved converted deuterons to 4He, while others contest this.
Badly needed are new experiments which address the correlation of 4He with energy, taking
care to collect all helium produced. Also needed are experiments which address how close to
the surface the retained helium is, which should help shed light on where the reactions occur.

If the reaction energy is not expressed kinetically, then it is a reasonable question as to where
it does go. In the end, the energy produced shows up as heat. There are no direct measurements
of the energy produced in condensed matter modes prior to thermalization. The dual laser
experiment may be relevant to this question, since the excess heat responds to the beat
frequency, suggesting a nonlinear response, under conditions where the laser intensity is orders
of magnitude too weak for any nonlinear response to be expected by conventional means. If the
reaction energy were deposited into plasmon modes [keeping in mind that one would expect
hybridization of low energy (2 eV) plasmon modes with optical phonon modes], then these
internal modes may have sufficient excitation to provide a nonlinear response. Hence, there is
an indirect argument for where the energy goes at least in one kind of experiment. The very
high local power per unit volume production may be connected with the dual laser nonlinearity.
What is really needed is some new experiment which can detect enhanced excitation in
longitudinal plasmon modes and in optical phonon modes in association with excess heat
production.

Attention should be drawn to the three-body Kasagi experiment, which suggests the
possibility of deuteron-deuteron localization on the fermi scale. If correct, this experiment is of
great significance, and may provide a glimpse into part of the internal reaction dynamics.
Deuteron-deuteron fusion anticorrelated with excess heat production is supportive of
mechanisms involving deuterium, but this is not universally agreed on at present. The strong
screening effects observed in beam experiments are thought by many to be related to the low-
level fusion effect; however, neutron production seems to come in (hour long) bursts events,
similar to excess heat bursts. Most likely, there is more involved in low-level deuteron-
deuteron fusion than simple screening effects.

Attention should also be drawn to the energetic alpha signal. The key question here should
be: where does the energy come from? There are no energetic particles with even greater
energy present in the amounts needed for the disintegration of nuclei with alpha particles in the
10-20 MeV range. So, the energy must come from somewhere else. But from where? The
significance of the observation is in the implication that a large quantum may be communicated
somehow by the local condensed matter environment leading to the disintegration of a nucleus.
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This would be unprecedented in nuclear physics, but seems to be a direct consequence of the
Cecil and Lipson experiments. If such a large quantum can be so communicated, then the
possibility of it somehow being chopped up into a large number of small quanta seems perhaps
more plausible.

The requirements on loading probably tell us something about the local environment needed
for the reactions to occur. Arguments put forth over the years include: increased density results
in increased conventional reaction probability; a connection with the D to Pd loading at which
PdD becomes thermodynamically unstable; the development of a new phase; and a connection
with the D to Pd loading at which host Pd vacancies are stabilized. Calculations indicate that D2

cannot form inside bulk PdD due to occupation of antibonding orbitals, but perhaps the
situation is different near vacancies where the electron density is lower. NMR experiments may
be able to clarify this in the case of thin film samples of PdD with high vacancy concentration.
There is no agreement on these issues at this time, and experiments have not yet clarified the
role of loading.
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Abstract
Over the years theorists have adopted a wide variety of approaches to theoretical
problems in condensed matter nuclear science. If one starts with a formulation
adapted to condensed matter, then the resulting model may be well adapted to
describing electrons and phonons, but perhaps less well adapted to describing
nuclear states. If one starts with a formulation adapted to nuclear calculations,
then the resulting model may be well adapted to structure and reaction
calculations, but perhaps less well adapted to phonon or plasmon modes. We
discuss here the use of a more general formulation based on nucleons and
electrons which can be used for problems in condensed matter physics, nuclear
physics, or for problems that involve interactions between nuclear and
condensed matter systems.

1. Introduction
Excess heat in the Fleischmann-Pons experiment appears to be the result of a new kind of

nuclear process [1]. The experimental arguments supporting this include: (a) the amount of
energy measured greatly exceeds that which could be stored conventionally, or which could be
of chemical origin; (b) 4He is observed as an ash in amounts commensurate with the energy
produced, where the amount of energy observed per 4He is near 24 MeV (which is the mass
difference between two deuterons and 4He); and (c) low-level nuclear emissions have been
observed in samples at low current density which produce excess heat at high current density.
However, the excess heat is produced without commensurate energetic particle production,
which is unprecedented. In a conventional exothermic nuclear reaction, the reaction energy is
expressed as kinetic energy in the reaction products. In the Fleischmann-Pons experiment the
excess heat is thought to be due to an exothermic nuclear process, but experiment shows an
absence of corresponding energetic emissions.

If the energy does not appear as kinetic energy, then it must be expressed through other
channels, since ultimately it is seen in thermal measurements. The only available non-kinetic
channels into which the energy might go are those of the host metal deuterides structure, which
are condensed matter modes. From the results of single and dual laser experiments, there is
indirect evidence that some of the energy may be going into plasmon or optical phonon modes
prior to thermalization. As such, it seems reasonable to consider the theoretical question as to
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what kind of coupling occurs between these modes and the local nuclear systems which have
been put forth in proposed reaction mechanisms.

More generally, there are by now numerous experiments which show anomalies of one sort
or another (beyond excess heat), in which nuclear and condensed matter effects are probably
connected. To address such issues, theorists over the years have been using a variety of tools to
develop models, and to make predictions. However, if a condensed matter approach is adopted,
then there are issues associated with including nuclear effects. If the starting point is some kind
of nuclear physics calculation, then there are issues as to how one includes condensed matter
effects. Within the literature one finds a variety of approaches which have been employed, so
far with no systematic formulation. For each problem and each author, one must often put in
effort to understand both the underlying formulation as well as the result.

Because of this, it seems worthwhile to see whether a formulation might be constructed
which has a foundation sufficiently general to encompass aspects of condensed matter and
nuclear physics on a uniform footing. If so, then we might be able to use it to advantage in
modeling problems in areas where both are equally important in accounting for physical effects
that are observed. In what follows, we describe one approach to such a formulation. In essence,
if we do nothing more than start from a set of fundamental building blocks, such as electrons
and nucleons, then the resulting formulation has the potential to speak to problems in the two
disciplines on equal footing starting from a common foundation. Armed with such a
foundation, we would be able to bring in results from the relevant literature in both disciplines
within a unified framework to address problems of interest. Workers with backgrounds in either
discipline could then have a common language that could be used to address such problems.

2. Electrons and nucleons
As a foundation, we consider models at the outset composed of a set of electrons and a set of

nucleons. Within the isospin formalism, neutrons and protons are considered to be simply
nucleons; identical particles differing only by whether they are isospin up (proton) or isospin
down (neutron). This is similar to a set of electrons, which are identical particles, and which
may have spin up or spin down.

Computations of nuclear structure or dynamics can in many cases be described adequately
from such a starting place, and over the years good models have been developed that describe
the interaction between nucleons. Restricting ourselves to a description based on nucleons bars
us from addressing more sophisticated problems in which quarks become important. However,
given the difficulty of working with QCD at present in association with bound state problems,
this limitation seems a good trade off against a much improved ability to perform calculations
much more easily.

Condensed matter computations in general assume electrons and nuclei, so that breaking
down nuclei into their component nucleons greatly increases the complexity of what is already
a pretty complicated theoretical problem. If one needs to account for the nuclear structure of
every nucleus in a solid at the outset, then one would expect that subsequent calculations will
quickly become a mess. Since the expanded formulation includes condensed matter physics as
a subset, we are sure that it will be capable of address relevant problems in principle. However,
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at some point we will require tools to reduce our description in order to allow us to focus on
important parts of a problem. Hence, using a starting point of a set of electrons and nucleons at
the outset will have to be viewed as formal for condensed matter calculations, and we will need
a way to collect the nucleons back into their constituent nuclei for those that are not directly
involved in a reaction under consideration.

Consequently, we require of our formulation a basic definition for the electron-nucleon
Hamiltonian, and then we will need a systematic way to reduce problems so that we can focus
on those parts which are particularly important for a specific calculation.

2.1. The electronic part

Focusing first on the electronic part, it seems clear that the place to start in general is with
QED, which describes electrons and photons (the focus on electrons above is simplistic, since
the interaction with electromagnetic fields is ubiquitous in condensed matter systems). In the
literature over the years, one can find problems worked in configuration space (relativistic and
nonrelativistic), in k-space, in second quantization, and using a wide range of approaches. We
have no plans here to restrict in any way which part or formulation of QED to be used, and we
would consider configuration space models that include only Coulomb interactions to be a
good low-end example of a useful subset of QED.

2.2. The nucleon part

One can find much literature on structure and dynamics calculations of nuclei presented in
configuration space, with empirical nucleon-nucleon potentials and Coulomb interactions. This
would constitute a useful low-end example of the nucleon part of the problem. At the other end
of the spectrum, there have been published nucleon-based field theories which are empirical
generalizations of QED, including relativistic effects and coupling with the electromagnetic
field (see for example [2] which discusses QHD). Such models would equivalently be suitable
for the general formulation under discussion in this paper. In order to model beta decay, we
assume that such models are augmented as needed with neutrinos and their associated weak
interactions.

2.3. A simple example of a configuration space Hamiltonian

As an example of a minimal low-end model, we might adopt a Hamiltonian of the form

In this model, the first two terms account for the (nonrelativistic) kinetic energies of the
electrons (with mass m) and nucleons (with mass M); the third term describes Coulomb
interactions between electrons; the fourth term describes strong force and Coulomb interactions
between nucleons; and the final term describes the attractive Coulomb interaction between
electrons and protons.
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2.3. The nucleon-nucleon interaction

The nucleon-nucleon potential is far more complicated than the simple Coulomb interaction
(which could be used as a first approximation for the electron-electron potential). This is
because nucleons are composite particles made up of quarks. In the past decades, nuclear
physicists have developed empirical nucleon-nucleon potentials that are accurate for “low
energy” (below a few hundred MeV) applications by fitting scattering data and bound state
energies to appropriate functional forms [3]. One such potential that was proposed early on was
the Hamada-Johnston potential [4]. A more modern example is the Argonne potential, which is
now widely used [5]. More complicated nonlocal potential models have been developed in
recent years [6,7].

2.4 Antisymmetrization

Electrons are identical fermionic particles, so that the overall wavefunction must be
antisymmetric under the exchange of any two electrons, which leads to constraints on the spin
and spatial pieces. Nucleons in this kind of model are also identical fermionic particles, so that
once again the overall wavefunction must be antisymmetric under the exchange of any two
nucleons, which in this case leads to constraints on the spin, isospin, and spatial parts of the
problem. The extra degree of freedom in the nucleon part of the problem makes the
construction of properly antisymmetrized nuclear wavefunctions a more complicated exercise
than in the electronic case.

In the case of two electrons, there are two ways to construct an antisymmetric wavefunction:

In the case of two nucleons, there are three ways to construct an antisymmetric wavefunction:

For three-nucleon or four-nucleon wavefunctions, there are many more combinations, and
one needs to make use of group theory for classification and construction [8]. This issue is
much more important for the nucleon part of the problem than for the electron part of the
problem, since the Coulomb interaction is scalar, and since an independent particle
approximation can provide a useful starting place. The independent particle approximation is a
much poorer starting place in the case of few-nucleon problems due to the absence of a fixed
attractive core.
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3. Matrix element example
The approach under discussion is very powerful, and to illustrate this we consider a formal

example in the case of a phonon exchange matrix element. The discussion that follows is a
brief summary of one given previously in Ref. [9]. We consider phonon exchange associated
with a nuclear transition mediated by the nucleon-nucleon interaction. We assume that the
initial and final nucleon states are nearly stationary in the lattice, which means that the
associated physical process is not energy conserving, so that the matrix element would describe
a piece of a more complicated physical process that does conserve energy.

3.1. Formal initial and final state wavefunctions
We take as a formal starting place initial and final state wavefunctions that are much more

general than will be needed, but which are consistent with the formulation under discussion

Where the subscript j is used for electron position and spin variables, and  is used for
nucleon position and spin variables. The matrix element under discussion can be written
formally as

where Vn is the nucleon-nucleon interaction. At this point, since the wavefunctions are assumed
to be properly antisymmetrized functions of the nucleon spin, isospin, and position variables,
the matrix element is expressed appropriately for a calculation of the nucleon-nucleon
interaction. Unfortunately, there is no hope of describing phonon exchange or condensed matter
effects at this level with such a description. Starting from this formulation as a formal starting
place, we need to reduce the problem systematically so that it might be amenable to
computation.

3.2. Spectator nuclei
One thing that complicates matters is that most of the nuclei in the lattice do not participate in

the reaction of interest, and contribute only through their center of mass coordinates. For
example, consider a nuclear rearrangement of a local four nucleon system involving two
deuterons; in this case, none of the host metal nuclei participate, and we should not need to
carry around a description of the internal structure at the nucleon level. Hence, our first task is
to eliminate individual nucleon coordinates of the spectator nuclei, and replacing them by a
smaller number of nuclear center of mass coordinates. This can be done rigorously by
expressing the parts of the spectator wavefunctions in terms of center of mass coordinates and
relative coordinates, and then integrating over relative coordinates. In the end, we can denote
this through
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The electron variables remain the same, but now the set of nucleon coordinates under
consideration is reduced, and we have explicit center of mass coordinates for the spectator
nuclei. In this form, we are now much closer to a problem formulation suitable for the
condensed matter part of the problem.

3.3. Born-Oppenheimer approximation
As long as we are interested in processes assumed to be adiabatic relative to electron

dynamics, we can make use of a Born-Oppenheimer approximation in order to reduce the
problem further. The associated product wavefunction can be written as

Where the first term is the electronic wavefunction given fixed nucleon and nuclei positions,
and the second is the adiabatic nucleon and nuclei wavefunctions. If our focus is on phonon
exchange, then we are interested in the second term, and it may be possible to integrate out the
electronic part of the problem if we have some reason to believe that the electronic
wavefunctions in the initial and final states are sufficiently alike. If not, then the overlap
integral coupling to the relevant electronic states in the final state will have to be estimated. For
simplicity, we will assume in the matrix element under consideration that there are no
important electronic or plasmon excitations. This approximation has the effect of reducing the
wavefunction according to

3.4. Phonons
Our goal was to develop a description for phonon exchange, and we require yet one more

modification of the problem in order to bring phonons into our description. One way to do this
is to recast the local nucleon problem in terms of relevant center of mass and relative
coordinates. For example, if there are two deuterons present, then two different center of mass
coordinates would be appropriate. If a helium nucleus is present, then only a single center of
mass coordinate would be appropriate. We can denote this through

This change in coordinates then leads to wavefunctions that we may denote through
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Now the wavefunction on the RHS has a full set of center of mass coordinates, and from the
Born-Oppenheimer approximation (or from experiment) we can in principle develop
equilibrium positions and force constants, so that we can recast the center of mass position
operators in terms of phonon mode amplitudes. This we can denote according to

where qi is a vector that contains all of the initial state phonon mode amplitudes. The nucleon
center of mass coordinates in this case can be expressed as phonon operators.

3.5. Matrix element integrations
We now have wavefunctions in a form suitable for describing phonon exchange matrix

elements, at least formally. The matrix element can be written as [9]

where the center of mass coordinates of the initial state lattice must agree with the center of
mass coordinates in the final state lattice

This is consistent with the linear relation between vibrational coordinates that is sometimes
used in the case of Franck-Condon factors in polyatomic molecules [10,11]

In addition, the individual nucleon coordinates in the initial state must agree with those for the
same nucleons in the final state, which is imposed through

3.6. Coupling between phonons and internal nuclear coordinates
In the expression for the matrix element Mfi above, the initial state and final state

wavefunctions are expressed in terms of phonon coordinates and internal relative nuclear
coordinates. To within an excellent approximation, these two degrees of freedom are
independent, so that we could reasonably use product wavefunctions for both. If so, then the
issue of the origin of coupling between them becomes of interest. The coupling between these
degrees of freedom comes about implicitly in this formulation through the nucleon-nucleon
interaction, which depends on the relative position of two nucleons. The nucleon coordinates
themselves depend on the local nuclear center of mass coordinate (which itself is a function of
the phonon mode coordinates), and the relative coordinates. As a result, under certain
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conditions (for example, if the intial state contains two deuterons, and the final state contains a
4He nucleus), Vn can cause a mixing between the phonons and internal relative coordinates.

4. Discussion
We can use this approach to address problems systematically in condensed matter nuclear

science which involve both nuclear and condensed matter pieces. In order to handle nuclear
models, we begin with a description at the outset in terms of nucleons and electrons. This
allows us to specify the problem in a way that is consistent with the requirements for the
nuclear part of the calculation. However, the wavefunctions and matrix elements that result
initially are far too complicated to work with for the condensed matter part of the problem. The
idea is to subsequently reduce the problem into a form suitable for condensed matter
calculations by using successive transformations.

We illustrated this in a formal example involving a phonon exchange matrix element. From
this example, we see that the nucleon-electron starting place does indeed provide for a suitable
starting point for a nuclear calculation. If the strong force is involved, then we need fully
antisymmetric nucleon wavefunctions expressed in terms of nucleon variables, and the
formalism outlined here provides for this. The utility of the approach for the condensed matter
part of the problem is that it allows for a well-defined foundation that can be used as a starting
point for approximations and transformations commonly used in condensed matter calculations.
In the end, the formalism allows us to see explicitly how mixing between phonon modes and
internal nuclear coordinates come about.

Limitations imposed on the conference proceedings restrict us from any detailed
consideration of other problems, but it should be clear that we can apply the method generally
to problems that have arisen within the field. Should we wish to describe condensed matter
screening effects in the same computation with deuteron-deuteron fusion reactions, the
formulation outlined here can handle the problem systematically. If we are interested in
coupling nuclear reactions with plasmon mode excitation, then we can start from the same
place, but make different approximations and transformations to obtain a formula for a matrix
element in a form suitable for computation.
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Abstract
A consistent conventional theoretical description is presented for anomalous
low-energy deuterium nuclear fusion in micro/nano-scale metal grains and
particles. The theory is based on the Bose-Einstein condensate (BEC) state
occupied by deuterons trapped in a micro/nano-scale metal grain or particle. The
theory is capable of explaining most of the experimentally observed results and
also provides theoretical predictions. Experimental tests of theoretical
predictions are proposed. Scalabilities of the observed effects are discussed
based on theoretical predictions.

1. Introduction
The conventional deuterium fusion in free space proceeds via the following nuclear

reactions:

{1} D+D→p(3.02 MeV) + T (1.01 MeV);
 {2} D+D→n(2.45 MeV)+3He(0.82 MeV); and
 {3} D+D→4He+γ(23.8 MeV). 

The cross-sections (or reaction rates) for reactions {1} – {3} have been measured by beam
experiments at intermediate energies ( ≥10 keV), and are expected to be extremely small at low 
energies (≤ 10 eV) due to the Gamow factor arising from Coulomb barrier between two 
deuterons. The measured cross-sections have branching ratios: (σ{1}, σ{2}, σ{3}) ≈ (1, 1, 
10-6).

From many experimental measurements by Fleischmann and Pons in 1989, and many others
over 19 years since then [1], including the recent work by Szpak, Mosier-Boss, and Gordon [2]
and the most recent work by Arata and Zhang [3], the following fact has been established. At
ambient temperatures or low energies (≤ 10 eV), deuterium fusion in metal proceeds via the 
following reactions:

{4}D(m) + D(m)→p(m) + T(m) + 4.03 MeV (m);
 {5} D(m) + D(m)→n(m) + 3He(m) + 3.27 MeV (m); and
 {6} D(m) + D(m)→4He(m) + 23.8 MeV (m),

where m represents a host metal lattice or metal particle. Reaction rate R for {6} is dominant
over reaction rates for {4} and {5}, i.e., R{6} >> R{4} and R{6} >> R{5}. Additional
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experimental observations include requirements of both higher deuteron loading (D/Pd ≥1) and 
deuterium purity (H/D << 1), the phenomenon of “heat after death”, and enhancement of the
effect by electromagnetic fields and laser stimulation. In this paper, a consistent conventional
theoretical description is presented for explaining the above observations of deuterium nuclear
fusion in micro/nano-scale metal grains and particles. The theory presented in this paper is
capable of explaining the above observations, and provides theoretical predictions which can be
tested experimentally for the confirmation of the theory.

In the following, a detailed description of the theoretical explanation, based on the theory of
Bose-Einstein condensation nuclear fusion (BECNF) [4-7] and on selection rules recently
derived for a mixed system of two species [8], will be presented along with suggested
experimental tests of predictions of the theory and a discussion of the scalability of the fusion
rates based on the theory.

2. Theory of Bose-Einstein Condensation Nuclear Fusion (BECNF)
Bose-Einstein condensation (BEC) mechanism: The concept of the Bose-Einstein
condensation (BEC) [9] has been known for 84 years (since 1924), and has been used to
describe all physical scales, including liquid 4He, excitons in semiconductors, pions and kaons
in dense nuclear matter (neutron stars, supernovae), and elementary particles [10]. It is only 13
years ago in 1995 that the BEC phenomenon was observed directly in dilute vapors of alkali
atoms, such as rubidium [11], lithium [12], and sodium [13] confined in magnetic traps and
cooled down to nano Kelvin temperatures.

In the atomic BEC case [11], the BEC state was created by cooling dilute Rb atoms loaded
into a magnetic confinement potential at 300 K. It was cooled by laser cooling (Doppler
cooling) to ~ 90 μK (4 x 106 atoms) with a density of 2 x 1010 atoms/cm3. Further cooling was
accomplished by evaporation cooling removing energetic atoms to 170 nK. At 170nK, it
consists of 2000 atoms at a number density of 2.6 x 1012/cm3 in BEC state (near zero velocity)
while other 2 x 104 atoms in the trap had a Maxwell-Boltzmann (MB) velocity distribution with
a exponential tail characteristic of T ≈ 170nK.  The requirement for BEC, λdb > d, is satisfied,
where λdb is the de Broglie wavelength and d is interatomic spacing distance.

In our nuclear BEC phenomenon, we have deuteron number density of ~ 6.8 x 1022cm-3 in
metal, corresponding to an average separation distance of d ≈ 2.45 Å between deuterons.  In 
order to achieve the nuclear BEC state of deuterons in metal, we need to have the average
deuteron kinetic energy Td smaller than c

dT = 0.0063 eV, i.e. Td < c
dT , in order to satisfy the

requirement λdb > d.

The MB distribution is originally derived for weakly interacting dilute gas (ideal gas). For
strongly interacting and dense systems such as mobile deuterons in metal, the MB distribution
is not applicable and hence average deuteron kinetic energy of kT = 0.026 eV at T = 300 K is
not applicable for deuterons in metal.

Mobility of deuterons in a metal is a complex phenomenon and may involve a number of
different processes [14]: coherent tunneling, incoherent hopping, phonon-assisted processes,
thermally activated tunneling, and over-barrier jump/fluid like motion at higher temperatures.
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If mobile deuterons in a metal are confined by a confining potential provided by metal atoms
and electrons, it may be possible that deuteron momentum or velocity distribution in a metal

may have the average deuteron kinetic energy smaller than c

d
T = 0.0063 eV, thus satisfying λdb

> d. We note that c

d
T = 0.0063 eV corresponds to the average deuteron velocity of vc = 0.78 x

105 cm/sec while the average deuteron kinetic energy of kT = 0.026 eV with T = 300 K
corresponds to the average deuteron velocity of vk = 1.6 x 105 cm/sec. Boundaries for
micro/nano-scale metal grains and particles can act as barriers and may slow down mobile
deuterons resulting in lower average velocity v < vc and smaller average kinetic energy Td <

c
dT near boundaries. Therefore, it may be possible that the conditions, Td < c

dT and λdb > d, are

achieved for mobile deuterons in localized regions of the metal without cooling as done in the
atomic BEC case, and hence, it may be possible to observe experimentally the effects of the
nuclear BEC.

Mobility of proton and deuteron in metals: It is well know that the hydrogen ions are highly
mobile within metal hydrides [14,15]. Hydrogen mobility takes various temperature dependent
forms. The mobility extends to “fluid like” motion at temperatures comparable to the interstitial
site or self-trapping, binding energy ~ 0.15 eV. At higher temperatures below the melting point,
hydrogen ions no longer remain within the potential wells of interstitial sites but undergo free
motion similar to the motion of atoms in gases [14]. It is expected that the mobility of hydrogen
ions (or deuterium ions) will increase, as the loading ratio H/metal (or D/metal) of hydrogen
atoms (or deuterium atoms) increases and becomes larger than one, H/metal ≥ 1 (or D/metal ≥ 
1).

Theoretical formulation for single species case: For applying the concept of the BEC
mechanism to deuterium fusion in a nano-scale metal particle, we consider N identical charged
Bose nuclei (deuterons) confined in an ion trap (or a metal grain or particle). Some fraction of
trapped deuterons are assumed to be mobile as discussed above. For simplicity, we assume an
isotropic harmonic potential for the ion trap to obtain order of magnitude estimates of fusion
reaction rates. N-body Schroedinger equation for the system is given by

 EH (1)

with the Hamiltonian H for the system given by
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where m is the rest mass of the nucleus. The detailed derivations are given elsewhere [5,6,7,16]
for obtaining the approximate the ground state solution for Eq. (1) and the approximate
theoretical formula for the deuteron-deuteron fusion rate in an ion trap (nano-scale metal
particle). The use of an alternative method based on the mean-field theory for bosons (see
Appendix in [6]) yields the same result.
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Our final theoretical formula for the nuclear fusion rate Rtrap for a single trap containing N
deuterons is given by

Rtrap= ΩBNω2 (3)

with
3

2

4

3

r

N

m

c














 (4)

where r is the radius of trap/atomic cluster, , rr N is the average number of Bose

nuclei in a trap/cluster, and B is given by B=3 Am/(8παħc), with A= 2SrB/(πħ), rB=ħ2/(2μe2),
and μ=m/2. S is the S-factor for the nuclear fusion reaction between two deuterons. For 
D(d,p)T and D(d,n)3He reactions, we have S ≈ 55 keV-barn. We expect also S ≈ 55 keV-barn 
for reaction {6}. Only one unknown parameter is the probability of the BEC ground state

occupation, Ω. It may be proportional to N-1/3, Ω N-1/3, or to N-2, 2N .

We can rewrite Eq. (3) as
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where Dtrap is the average diameter of the trap, rDtrap 2 .

The total fusion rate Rt is given by
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where ND is the total number of deuterons and Ntrap = ND/N is the total number of traps.

Two species case and selection rule: We consider a mixture of two different species of
positively charged nuclear particles, labeled 1 and 2, with N1 and N2 particles, respectively,
both trapped in a micro/nano-scale metal grain or particle. We denote charges and masses as
Z1≥ 0, Z2≥ 0, and m1, m2, respectively. We use the mean-field theory [7,17] for a system of
interacting bosons confined in a harmonic potential to derive the following selection rule:
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 (7)

The detailed derivations are given in reference [8]. We now apply the selection rule, Eq. (7).
If we use m as mass number approximately given in units of the nucleon mass, we have [Z1

(D)/m1 (D)] = ½, [Z2 (p)/m2 (p)] = 1, [Z2(T)/m2 (T)] = 1/3, [Z2 (n)/m2 (n)] = 0, and [Z2(
3He)/m2

(3He)] = 2/3.

Since [Z1/m1] ≠ [Z2/m2] for reactions {4} and {5} they are forbidden or suppressed, and
fusion reaction rates for reactions {4 and {5} are expected to be small, while reaction {6} is
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allowed since [Z1/m1] = [Z2/m2], and fusion reaction rate is expected to be large for reaction
{6}. In summary, we obtain R{6} >> R{4} and R{6} >> R{5}.

3. Theoretical Implications and Predictions
Eqs. (3) and (6) provide an important result that nuclear fusion rates Rtrap and Rt do not

depend on the Gamow factor in contrast to the conventional theory for nuclear fusion in free
space. This could provide explanations for overcoming the Coulomb barrier and for the claimed
anomalous effects for low-energy nuclear reactions in metals.

This is consistent with the conjecture noted by Dirac [18] and used by Bogolubov [19] that
boson creation and annihilation operators can be treated simply as numbers when the ground
state occupation number is large. This implies that for large N each charged boson behaves as
an independent particle in a common average background potential and the Coulomb
interaction between two charged bosons is suppressed.

For a single trap (or metal particle) containing N deuterons, the deuteron-deuteron fusion can
proceed with the following three reaction channels.
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where ψBEC is the Bose-Einstein condensate ground state (a coherent quantum state) with N
deuterons and ψ* are final excited continuum states. Excess energy (Q value) is absorbed by 
the BEC state and shared by (N-2) deuterons and reaction products in the final state.

We now consider the total momentum conservation. The initial total momentum of the initial

BEC state with N deuterons (denoted as DN) is given by .0ND
P


Because of the total

momentum conservation, the final total momenta for reactions {4}, {5}, and {6} are given by
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where T represents the kinetic energy.

For a micro-scale metal grain confined by grain boundaries of ~ 1μm diameter, we expect to 
have N ≈ 1010 and Q{6}/N ≈ 10-3 ~ 10-4 eV, and hence we expect the excess heat and 4He
production due to reaction {6} but no nuclear ashes from some of the reactions described below
in section 4.

For nano-scale metal particles, the above consideration shows that excess energies (Q) lead
to a micro/nano-scale fire-work type explosion, creating a crater/cavity and a hot spot with fire-
work like star tracks. The size of a crater/cavity will depend on number of neighboring Pd
nanoparticles participating in BEC fusion almost simultaneously. Since sizes of deuteron and

Pd nucleus are of the order of ~10-4 o

A (~ 10 fm) while the average distance between two



609

neighboring Pd atoms is ~ 2.5
o

A , ~ 10 keV deuteron from the BEC deuterium fusion encounters
mostly electrons and transfers its kinetic energy to electrons. Occasionally, ~ 10 keV deuteron
may interact with Pd nucleus to initiate nuclear reactions, Pd(d,p)Rh, etc. When the BEC
deuterium fusion takes place in a Pd nanoparticle, exploding deuterons are expected to damage
and leave the host Pd nanoparticle, but some of the Pd nanoparticles may remain intact and
may participate again in the BEC deuterium fusion after absorbing again a sufficient number of
deuterons, D/Pd ≥ 1. 

4. Further Consequences of BEC Mechanism and of Selection Rule
Effects due to deuterons: Deuterons with Q{6}/N ≈ ~10 keV energy from reaction {6} can 
undergo reactions {1} and {2} producing p(3.02 MeV), T(1.01 MeV), n(2.45 MeV), and
3He(0.82 MeV), which in turn will proceed with further reactions.

Tritons produced by reaction {1} (1.01 MeV triton) and by reaction {4} (average kinetic
energy of Q{4}/N ≈ ~keV) will interact with surrounding deuterons via the following reaction 

 {7} T + D → 4He(3.52 MeV) + n (14.07 MeV).

Because of triton kinetic energies of 1.01 MeV or ~ keV, the reaction rate for {7} could be
large enough to produce 14.07 MeV neutrons, which may have been recently observed by
Forsley and Mosier-Boss [20]. We note that 4He produced by reaction {7} has much higher
kinetic energy (3.52 MeV) compared with deuterons from reaction {6} (Q{6}/N ≈ ~10 keV). 

Effects due to neutrons: Neutrons with 2.45 MeV kinetic energy from reaction {2}, neutrons
with Q{5}/N ≈ ~ keV kinetic energy from reaction {5}, or neutrons with 14.07 MeV kinetic 
energy from reaction {7} can undergo further reactions, {8} and/or {9} below:

 {8} n + D →T + γ + 6.26 MeV  

{9} Neutron induced transmutation with other nuclei.

In addition, 14.07 MeV neutrons from reaction {7} may initiate reactions, 12C(n,n')3 4He and
12C(n,n'α)8Be(8Be→24He), which may have been recently observed by Mosier-Boss et al. [21].

Since reaction {8} produces more tritiums than neutrons, we expect R(T) > R(n), and also R
(T) > R(3He).

High deuterium loading requirement: D/Pd ≥ 1 is required for sustaining deuteron mobility 
in Pd metal. The mobility of deuterons is required for the BEC mechanism.

Deuterium purity requirement: Because of violation of the selection rule, [Z1(D)/m1(D)] ≠ 
[Z2(p)/m2(p)], presence of hydrogens in deuteriums will surpress the formation of the BEC
states, thus diminishing the fusion rate due to the BEC mechanism. The required H/D ratio is
expected to be H/D < N-1. For a 5 nm Pd nanoparticle with N ≈ 104, H/D < 10-4, and hence
99.99 % deuterium purity is required.

Heat after death: There have been observations of continued heat generation after the input
for experiment is switched off. This effect is known as “heat after death”. Because of mobility
of deuterons in Pd particle traps, a system of ~ 1022 deuterons contained in ~ 1018 Pd particle
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traps (in 3g of Pd particles with average particle diameter of ~ Å50 ) is a dynamical system.

BEC states are continuously attained in a small fraction of the ~ 1018 Pd particle traps and
undergo BEC fusion processes, until the formation of the BEC state ceases or becomes
negligible.

Enhancement by electromagnetic fields and laser stimulation: Application of
electromagnetic fields [2] and laser stimulation [22] have been shown to enhance the excess
heat production and other anomalous effects. These effects may be due to a decrease of the
average kinetic energy of mobile deuterons and/or to an increase of mobile deuterons
participating in the BEC fusion processes.

Increase of resistance: When the BECNF occurs, more mobile deuterons will be created. This
in turn will increase the resistance of metal. This effect may have been recently observed by
Celani et al. in deuterium gas loading experiments with Pd nanoparticles coated on a Pd wire
[23].

5. Experimental Tests of Theoretical Predictions
The first experimental test of the BEC mechanism for deuterium fusion with nano-scale Pd

particles was carried out with Pd blacks loaded by high-pressure deuterium gas [16]. The result
of this experiment shows no excess heat production. This may be due to the fact that Pd
nanoparticles (Pd Blacks) used had too large sizes (80 nm – 180 nm) and were clumped
together (not isolated). Furthermore, deuterium purity requirement was not satisfied. The recent
report of deuteron gas-loading experiment by Arata and Zhang [3] show positive results of
observing excess heat and 4He production using ~ 5 nm Pd particles imbedded in ZrO2 and
purified deuterium. For experimental tests of the predictions of the theory, it would be
advantageous scientifically to use samples of Pd nanoparticles deposited on thin films such as
Al2O3/NiAl(111) [24-26], even though bulk materials such as Pd nanoparticles imbedded in
SiO2 aerogels [27] are more suitable for practical applications. Other possibilities are to use
other metals such as Zr or Ti nanoparticles. In all cases, the theory requires that metal
nanoparticles and micrograins are to be separated from each other by boundaries.

Tests based on the average size of metal particles: From Eq. (6) with N=ND(π/6)
3
trapD , we

obtain 1 6
t trap trap trapR (D ) D or D ,  where Dtrap is the average trap diameter, assuming 1/3 2N or N , 

respectively. This can be tested experimentally. This result provides a theoretical justification
for using 50 Å Pd nanoparticles to maximize the total fusion rates.

Tests based on the temperature dependence: Since the probability Ω of the BEC ground 
state occupation increases at lower temperatures (Ω ≈ 1 near T ≈ 0), the total fusion rate Rt will
increase at lower temperatures, Rt(Tlow) > Rt(Thigh). However, Rt is proportional to ND where
ND is the total number of mobile deuterons. Since ND(Tlow) < ND(Thigh), we expect Rt[ND(Tlow)]
< Rt[ND(Thigh)]. The above opposite temperature dependences for Rt will complicate analysis of
the temperature dependence of Rt.

Tests for reaction products and heat after death: Some examples of this type of tests are (1)
to look for micro/nano-scale craters/cavities and hot spots with micro/nano-scale fire-work like
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star tracks at Pd nanoparticle sites, before and after death, and (2) to measure neutron energies
to check the reaction products carries kinetic energies of 2.45 MeV from the secondary reaction
{2}, and Q{5}/N ~keV from reaction {5}.

Tests for increase of resistance: Resistance of the metal should be measured to test predicted
increase of resistance during the BECNF process.

Tests for scalability: One example is a scalability test based on the total number of Ntraps. Since
we have R N R N for the same R

t trap trap trap trap
  , we have theoretical prediction,

 R 30g Pd particles
t

/  R 3g Pd particles
t

≈10, etc., which can be tested experimentally. 

6. Conclusion and Summary
Theory of the BEC mechanism described in this paper provides a consistent conventional

theoretical description of the results of many experimental works started by Fleischmann and
Pons in 1989 and by many others since then [1], including the recent work of Szpak, Mosier-
Boss, and Gordon [2] and the most recent work of Arata and Zhang [3]. Theory is based on the
concept of nuclear Bose-Einstein condensate state for mobile deuterons trapped in a
micro/nano-scale metal grain or particle, which acts as a confinement or trapping potential,
similar to a magnetic trap used to observe the atomic BEC phenomenon with atoms in 1995
[11-13]. To validate this new concept of the nuclear BEC phenomenon, experimental tests for a
set of key theoretical predictions are proposed. Scalabilities of the observed effects are also
discussed.
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Abstract
Based on the similarity between cold fusion (CF) materials and such systems as
cellular automata and a set of recursion relations that occur in phenomena
characterized by complexity, we show that typical experimental data sets
obtained in the cold fusion phenomenon (CFP) are qualitatively explained using
concepts of complexity. Using the adjustable parameter nn introduced in the
Trapped-Neutron Catalyzed Fusion model for the CFP, as a parameter
specifying a set of recursion relations, classic experimental data sets such as
those by Fleischmann et al. (1989), De Ninno et al. (1989), and McKubre et al.
(1993) have been reexamined as typical examples showing some phases of the
CFP related with complexity. Thus, we have to expect only qualitative or
statistical reproducibility in the CFP and the controversial questions such as
quantitative reproducibility and controllability of events in the CFP should be
considered meaningless.

1. Introduction
It is well known now that complex dynamical systems consisting of many interacting

components (sub-units or agents) exhibit behavior called complexity [1, 2] that is interesting
but at the same time is not an obvious consequence of the known interaction among the agents.
The complexity includes such phenomena as (1) emergence, which refers to the appearance of
laws, patterns or order through the cooperative effects of the agents, (2) fractals, complex
geometric shapes with fine structure at arbitrarily small scales [3] and (3) power-laws, the
average frequency of a given size of event is inversely proportional to some power (close to 1)
of its size [4] in out-of-equilibrium states, and (4) chaos, which appears in a property of some
non-linear dynamical systems showing extreme sensitivity to initial conditions and long-term
aperiodic behavior that seems unpredictable [5].

The cold fusion phenomenon (CFP) in CMNS (condensed matter nuclear science) or SSNP
(solid-state nuclear physics) including various events occurs automatically or induced by
external effects in various complex systems consisting of many interacting components
(agents) in various manners [6, 7]. The external effects include thermal neutrons, electric field,
temperature change, irradiation of laser or charged particle beam, etc.

The relation between the complexity and the CFP has been explored in our works [6, 8].
There are several features of the CFP corresponding to characteristics of the complexity such as
the inverse-power relation, the bifurcation and chaos; thus, we can understand that the CFP is a
phenomenon characterized by nonlinear interactions between multi-component agents in the
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system composed of host nuclei and hydrogen isotopes both in periodic arrays and in ambient
thermal neutrons.

In this paper, we investigate qualitatively further relations between mathematical models of
complexity and the CFP. It is shown that the cellular automaton and a set of recursion
equations have common characteristics with CF materials where the CFP occurs. The
mathematical tools used in these mathematical models could be used in investigation of events
in corresponding events of the CFP.

2. Complexity in Systems with Nonlinear Interactions between Components
2.1 The Cellular Automata and the CFP

A very interesting situation arises in systems consisting of a lattice of identical boolean
components interacting locally in space. Such dynamic systems are referred to as cellular
automata [1, §3.12]. A factor in the CFP closely related to the cellular automata is the
occupation number of hydrogen isotopes in a host lattice if we assume the latter is perfect. The
occupation number X(ri ; t) of D or H (D/H) at a site ri  ≡ (xi, yi, zi ) and a time t satisfies the
following relation:

X(ri ; t +1) ≡ X(xi, yi, zi ; t +1) = Fi ({X(rj ; t)}) (2.1.1)

where {X(rj ; t)} is a set of values X(rj ; t) for rj adjacent to ri and Fi({X(rj ; t)}) ≡  Fi is a
function characterizing the change of the occupation number of D/H at ri by processes in the
system such as (1) diffusion of D/H and (2) consumption of D/H by nuclear reactions n + d = t
+ ф, n + p = d + ф and so forth (ф means phonons in these equations).

The function Fi is therefore a function of the parameter nn (number density of thermal
neutrons in the CF material) of the Trapped-Neutron Catalyzed Fusion model if we use the
model to describe the CFP.

2.2 Recursion relations and the CFP
Recursion equations xn+1 = λ f(xn) have been investigated in nonlinear dynamics for its

usefulness to describe a variety of problems [9]. From our point of view, it is interesting to
notice that a few experimental data obtained in the CFP seems to have characteristics of the
type seen in recursion equations, which suggests complexity in the CFP.

2.2.1 Recursion Relations
The recursion relations

xn+1 = λ f(xn), (2.2.1)

which have been well investigated in nonlinear dynamics, have interesting characteristics, as
shown by Feigenbaum [9]. A large class of recursion relations (2.2.1) exhibiting infinite
bifurcation possesses a rich quantitative structure – essentially independent of the recursion
functions f(x) – when they have a unique differentiable maximum x. With f(x) – f(x) ~ |x – x|z

(for |x – x| sufficiently small) and z > 1, the universal details depend only upon z. In particular,
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the local structure of high-order stability sets is shown to approach universality rescaling in
successive bifurcations, asymptotically by the ratio α (α = 2.5029078750957… for z = 2) [9].

We can investigate the CFP from the point of view described by the recursion relations
(2.2.1). The cold fusion phenomenon (CFP) contains events related to nuclear reactions
accompanying excess energy production. In these events, we have experimentally determined
parameters governing the occurrence of the CFP such as the loading ratio η (=D/Pd, H/Ni, etc.),
temperature T, current density i to the cathode in electrolytic and discharge systems, etc. The
events also show a characteristic of the recursion relations (2.2.1).

2.2.2 Structure of the Population (Density) Equation
The recursion equations (2.2.1) provide a description for a variety of problems. For example,

a discrete population (density) satisfies the formula

pn+1 = f(pn), (2.2.2)

which determines the population (density) at one time in terms of its previous value [9].

The events we observe in the CFP seem to belong to this type of quantities obeying the
relations (2.2.1) as we have partly shown in recent works [8].

If the population (or density) referred to is such that of a dilute group of organisms (or agents
e.g. the density of trapped neutrons nn in the CFP), then the population (density) equations,

pn+1 = b pn, (2.2.3)

accurately describe the population (density) growth with a growth rate b so long as it remains
dilute, with the solution of the equation

pn = p0 bn. (2.2.4)

For a given species of organism (agent) in a fixed milieu, b is a constant – the static birth rate
for the configuration.

As the population grows, the dilute approximation will ultimately fail: sufficient organisms
(agents) are present and mutually interfere. At this point, the next value of the population
(density) will be determined by a dynamic or effective birth rate beff:

pn+1 = beff pn (2.2.5)

with beff < b. Clearly, beff is a function of p, with

limp→0 beff (p) = b, (2.2.6)

the only model-independent quantitative feature of beff. It is also clear that

limp→∞ beff (p) = 0. (2.2.7)

Accordingly, the simplest form of beff to reproduce the qualitative dynamics of such a
population (density) should resemble Fig. 1, where beff (0) = b is an adjustable parameter.
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A simple specific form of beff (p) is written with a constant a;

beff (p) = b – a p, (2.2.8)

so that

pn+1 = beff pn – a pn
2.

By defining pn ≡ (b/a)xn, we obtain the standard form of logistic difference equations (l.d.e.)

xn+1 = b xn (1 – xn). (2.2.9)

In (2.2.9), the adjustable parameter b is purely multiplicative. With a different choice of beff,
xn+1 would not in general depend upon b in so simple a fashion [9]. Nevertheless, the internal b
dependence may be (and often is) sufficiently mild in comparison to the multiplicative
dependence that at least for qualitative purposes the internal dependence can be ignored. Thus,
with f(p) = p beff(p), any function like Fig. 1,

pn+1 = bf(pn) (2.2.10)

is compatible and representative of the population (density) equation discussed in [9].

Figure 1. Dependence of f(p) = p beff(p) on p after Feigenbaum [9].

To investigate the structure of the population (density) equation (2.2.9), we can use such a
study of the l.d.e. as given by J. Gleick [5].

3. Discussion – The Cold Fusion Phenomenon in Composite Systems with
Hydrogen Isotopes

As discussed in the preceding two subsections, the CF systems where the CFP occurs have
characteristics common with cellular automata and the set of recursion equations which are
well investigated mathematically. We discuss further here only the relation of the CFP with
cellular automata.
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Cellular automata, explained in Section 2.1, have a corresponding structure to the CF
systems. In the present situation of analysis of the CFP, it is difficult to determine the exact
form of the function Fi in Eq. (2.1.1) for an event in the CFP. A possible investigation of a
cellular automaton in the CFP is facilitated on the quantal approach given by us [6 §3.7]. The
number of neutrons ni(τ) is a function of values of ni(τ’) and ni’(τ’) where τ = τ’ + dτ’;

ni(τ) = f(vnp(ii’j; τ’)). (3.1.1)

Unfortunately, this approach is not complete, and we are far from a position of being able to
determine the functional form Fi in Eq. (2.1.1) or f in Eq. (3.1.1) which will be objects of future
works.
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Abstract
An explanation of the nuclear transmutation (NT) observed in XLPE (cross-
linked polyethylene) films is presented based on the neutron-drop model used in
the theoretical investigation of the cold fusion phenomenon in other cold fusion
materials (CF materials); transition-metal hydrides/deuterides. The NT’s, K → 
Ca, Mg → Al, 56

26Fe → 57
26Fe and Fe → Ni, are explained by a single-neutron 

absorption with or without a succeeding beta-decay to get final nuclides. On the
other hand, the NT’s, 56

26Fe → 64
30Zn and 56

26Fe → 60
28Ni, are explained by an

absorption of a neutron drop 8
4Δ and 42Δ, respectively, in the cf-matter formed in 

CF materials. Production of extraordinary elements Li, Pb and Bi is discussed
from our point of view. Thus, we concluded that the generation of water trees in
XLPE samples is caused by nuclear reactions induced by cold fusion
phenomenon at around spherulites. The NT found in XLPE may have a relation
with the NT’s found in biological bodies (biotransmutation).

1. Introduction
We have tried to explain the wide-spread experimental facts in the cold fusion phenomenon

(CFP) from a unified point of view using a phenomenological models, the trapped neutron
catalyzed fusion model (TNCF model) at first [1] and then the neutron-drop model (ND
model), a generalized version of the former [2]. It should be remembered here that the
development of the model demands an explanation for NT’s with large changes of the nucleon
and proton numbers observed in the CFP.

In the process of verification of the basic premises of these successful models, we have
developed a quantal investigation of the CF materials such as transition metal
hydrides/deuterides composed of a host lattice of transition metals and interlaced lattice of
interstitial protons/deuterons [3]. It was shown that it is possible for cf-matter to exist when it is
composed of neutron drops A

ZΔ with Z protons, Z electrons and (A – Z) neutrons in a dense
neutron liquid at boundary /surface regions of the crystals.

Recently, Kumazawa et al. [4, 5] observed the nuclear transmutation (NT) in XLPE
(closslinked polyethylene) including water trees, and then detected weak mission of gamma or
X-rays from similar samples [6]. Their results show, generally speaking, that water trees are
formed macroscopically at boundaries of XLPE samples and microscopically at amorphous
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portions of the sample among spherulites composed of crystalline lamellae. Use of heavy water
instead of light water did not show any positive effect on the occurrence of NT [5]

The NT observed in the XLPE films by Kumazawa et al. [4–6] has characteristics in
common with CF materials as a part of the CFP. Therefore, it is natural to apply the same
model (TNCF model) [1, 2] to explain the NT in XLPE that successfully explained the NT in
the CF materials [3].

2. Experimental Facts about Water Tree in Cross-linked Polyethylene
(XLPE)

We give an explanation of characteristics of the experimental data sets obtained by
Kumazawa et al. [4 – 6] in this section.

2.1 Summary of Experimental Data Sets obtained by Kumazawa et al.
We can summarize the experimental results obtained by Kumazawa et al. [4–6] as follows:

In the experiments, a XLPE (cross-linked polyethylene) sheet 0.5 mm thick was used. Au
was deposited as a ground electrode onto the bottom surface of the sample. Then, the sample
was dipped in aqueous solutions of electrolytes (a) KCl, (b) NaCl and (c) AgNO3 to make the
Blank samples. The Blank samples were placed in the aqueous solutions, and electric fields
with high -frequency (2.4–3.0 kHz) and high-voltage (3.0 – 4.0 kV/mm) were applied between
the voltage application wire above the sample and the ground electrode for 140 – 320 hours to
obtain “the samples after voltage application” (let us call them the Experimental samples, for
simplicity). Quantitative analysis of elements were performed for (I) the Original, (II) the
Blank and (III) the Experimental samples for three electrolytes (a) KCl, (b) NaCl and (c)
AgNO3. In the case (c), there are no data on the blank samples but data on the two distinct
regions selected visually (i) with water trees and (ii) without water trees.

Characteristics in the changes of elements from (I) the Original to (II) the Blank and (III) the
Experimental samples were summarized as follows:

In case (a) (KCl),

(1) K decreased and Ca increased,

(2) 56Fe decreased and 57Fe increased,

(3) 64Zn increased while other isotopes of Zn decreased.

In case (b) (NaCl),

(4) Mg decreased and Al increased in which the gross weight of the two elements was hardly
different compared to the Blank or the Original samples.

In case (c) (AgNO3),

(5) Fe decreased and Ni increased,

(6) New elements Li, Na, Pb and Bi were detected, and

(7) There are changes of elements in both regions with and without water trees.
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Furthermore, there are interesting features of the blank samples (II) in case (a);

(8) In Blank samples, Mg and Ca are increased from those in the Original one while Fe is
decreased.

In their second paper, [5] Kumazawa et al. reported detection of weak and burst-like
radiation, which they assumed was low energy gamma or X-rays. In the CFP, there are a few
observations of gamma and X-rays but they are peripheral (cf. Section 6.3 of [1] for the data of
gamma ray observation). We concentrate our investigation in this paper to the data reported in
the first paper [4].

3. Explanation of Nuclear Transmutation in XLPE by the TNCF Model
3.1 Microscopic Structure of Polyethylene (PE), Lamella and Spherulites in XLPE

The lengths of the C-C and C-H bonds of PE are estimated as 1.54 and 1.09Å, respectively.
The carbon chain is composed of tetrahedrally connected carbons with an angle between two
C-C bonds of 109.5 degree. A lamella has a lattice structure with ordered carbon nuclei (lattice
nuclei) interlaced with ordered protons even when the structure is not so simple, as in the case
of transition-metal hydrides/deuterides. The size of spherulites, crystal components of solid
polyethylene, also depends on conditions in which the sample is produced and ranges from ≃ 1

μm to ≃ 1 mm, in general. The ratio of portions occupied by crystalline component and
amorphous component of a solid PE sample depends also on the conditions.

3.2 Cold Fusion (CF) Matter in XLPE
It is natural to investigate nuclear transmutations observed in XLPE with the same

phenomenological approach as that used to analyze the CFP observed in transition-metal
hydrides/deuterides as a first step.

We have to notice common factors in transition-metal hydrides/deuterides and XLPE if we
take the point of view explained above. First of all, (1) there are crystalline structures of host
and hydrogen isotopes in both cases. Second, (2) the reaction products of nuclear
transmutations were found localized in boundary or surface regions of crystalline structure in
both cases. Third, (3) the neutron affinity we have defined to specify responsibility of nuclides
for the CFP [1, 2] is positive (favorable for the CFP) for C (2.22 MeV for 6

12C) in XLPE and Ti
(0.602 for 22

48Ti, for instance), Ni (4.80 for 28
58Ni), Pd (2097 for 46

105Pd) in transition-metal
hydrides/deuterides. Lattice constants of CF materials are tabulated in Table 1.

Table 1. Lattice constants of host nuclides lattices
Host nuclides Lattice constants (Å)
Ti (hcp) a = 2.95, c = 4.792
Ni (fcc) a = 3.52
Pd (fcc) a = 3.89
XLPE
(orthorhombic)

a = 7.40, b = 4.93, c = 2.53
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From our point of view, the super-nuclear interaction between neutrons mediated by
protons/deuterons in lattice nuclei (carbon in the case of XLPE), cross-linking in XLPE is
decisive; cross-linking protons (covalent bonded to two carbon atoms) mediate the interaction
of neutrons in carbon nuclei 12

6C on adjacent PE chains.

3.3 Explanation of Nuclear Transmutation in XLPE where observed Water Trees
We give explanations of the seven characteristics of the nuclear transmutations (NT) in

XLPE giving counterparts in the CFP for reference.

(1) Decrease of K and increase of Ca in the case (a) are explained by such a reaction in the
solids by absorption of a neutron followed by beta decay with a liberated energy ΔE = 1.31
MeV;

ｎ + 39
19K → 40

20K
* → 40

20Ca + e— + νe, (σnK39 = 2.10 b) (3-1)

where νe is an electron neutrino. As a measure of the reaction cross-section in solids we cited
the value in free space in the parenthesis behind the equation.

(2) Decrease of 56
26Fe and increase of 57

26Fe in the case (a) are similarly explained but without
beta decay due to the stability of 57

26Fe with an energy Q = 1.15 keV transferred to the lattice
system instead of gamma ray emission in free space;

ｎ + 56
26Fe  → 57

26Fe + Q.  (σnFe56 = 2.81 b) (3-2)

(3) Increase of 64
30Zn and decrease of 66

30Zn, 67
30Zn and 68

30Zn in the case (a) are explained by
using the neutron drop A

ZΔ, for example; 
56

26Fe + 8
4Δ → 64

30Zn. (3-3)

The decrease in other isotopes may be explained by nuclear reactions to transform them into
other elements but its details are left for another work.

(4) Increase of Al and decrease of Mg in the case (b) are explained by reactions similar to (3-2)
with Q = 7.08 MeV and Q’ = 12.11 MeV and a reaction similar to (3-1) with ΔE = 2.61 MeV.

ｎ + 24
12Mg  → 25

12Mg + Q.   (σnMg24 = 0.05 b)

ｎ + 25
12Mg  → 26

12Mg + Q’.   (σnMg25 = 0.19 b)

ｎ + 26
12Mg → 27

12Mg * → 27
13Al + e— + νe.  (σnMg26 = 0.04 b)

(5) Decrease of Fe and increase of Ni in the case (c) are explained similarly with use of the
neutron drop, for example;

56
26Fe + 4

2Δ → 60
28Ni.

Thus, we may imagine the following scenario of growth of a water tree: (i) a NT of impurity
nuclides occurs at a boundary region heating there by a liberated energy, (ii) a seed of a water
tree is induced by the liberated energy, and (iii) the applied high-frequency electric field makes
the water tree grow.
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The NT’s in phenanthrene [7] may have close relation with that in XLPE discussed in this
paper.
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Abstract
The comparison between the new 3-parameter formula and the old 5-paramter
formula for five major fusion cross-sections strongly confirms the selective
resonant tunneling model which forms the physical basis of a self-sustaining
heater without strong nuclear radiation. The development of condensed matter
nuclear science is not contrary to all understanding gained of nuclear reactions
in the last half century, but instead it improves our knowledge of the nuclear
physics of resonant tunneling of the Coulomb barrier. The detection of neutrino
emission from metal deuterides is proposed as a decisive step to further develop
this model.

1. Introduction
Building a self-sustaining heater without strong nuclear radiation is the fundamental goal of

the world-wide research into cold fusion, or condensed matter nuclear science (CMNS). After
19 year we have reached the stage of demonstration (Arata and Zhang’s experiment[1]),
correlation between the excess heat and the surface features (Violante et al. [2]). We still need
an explanation of why there is no strong neutron emission or gamma radiation from CMNS
experiments. The study on the nuclear fusion cross-section of the light nuclei just provided
such an explanation.

Early in 1972, Duane[3] did a survey on the theory of the nuclear fusion of the light nuclei.
He found that there was not enough experimental data to do a detailed study. However, based
on the Breit-Wigner formula, he developed a 5-parameter formula to describe the available
experimental data. He tried to reduce the number of the parameters, but he found that at least 5
parameters were necessary to fit the cross-sections for major fusion reactions. This 5-parameter
formula was adopted in a Handbook of Plasma Formulary edited by Naval Research
Laboratory (NRL) in 1978[4]. As a result, this 5-parameter formula has been widely cited in
the plasma fusion community. In 1992, Bosch and Hale[5] developed a better 9-parameter
formula based on the newly available experimental data and the R-matrix theory for nuclear
reactions. Bosch and Hale pointed out that the 5-parameter formula was not correct at the low
energy region, because it did not give the right dependence on energy. Nevertheless, this 5-
parameter formula is still cited in the Plasma Formulary even in the new edition in 2007[6].

In 1999, an identity was derived for the nuclear fusion cross-section[7]. This new identity
clearly showed the resonant effect using a complex quantity: W defined as the cotangent of the
phase shift. When the real part of W equals 0, there will be a resonance. When the imaginary
part of W equals (-1), the resonant effect will reach its maximum possible. This new identity
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explains why there is no neutron emission or gamma radiation accompanied with the “excess
heat” in CMNS. We call it selective resonant tunneling theory. In 2008, it was found that the
real part of W depended on the incident energy linearly, and the imaginary part of W was
almost a constant. This immediately led to a 3-parameter formula for the fusion cross-section of
the light nuclei. This new 3-parameter formula gives an even better fit with newly available
experimental data than the 5-parameter formula does, because the astrophysical S-function in
the 3-parameter formula includes a new term which is directly related to the selectivity of the
resonant tunneling[8]. Therefore, the comparison with experimental data has confirmed the
existence of the cold fusion phenomenon.

2. 3-parameter formula
The nuclear fusion cross-section may be written as [7]:
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if the S-partial wave is dominant. Here, W is related to the phase shift, , of the S-partial wave
as CotW  . When Coulomb field is applied to describe the repulsion between two charged
reactant nuclei, W is the coefficient in the linear combination of the regular and irregular
Coulomb wave functions. We have shown that the main dependence of W on energy is in the
form of Gamow factor[7,8]:
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The upper row of Fig. 1 shows the results of fitting this 3-parameter formula (5) to the
experimental data for D+T, D+3He, and D+D fusion reactions, respectively.

Figure 1. Selective resonant tunneling formula for D+T, D+3He, and D+D

The upper row of Fig. 2 shows the results of fitting this 3-parameter formula (5) to the
experimental data for T+T and T+3He fusion. Table I gives the values of three parameters (C1,
C2, and wi) for each case. In these figures, the black points are the experimental data from The
National Nuclear Data Center (ENDF/B VII.0 [9]). The solid lines are the results of calculation
using 3-parameter formula (5). The dotted lines in the lower row of figure 1 and 2 are the
results of calculation using the following 5-parameter NRL formula (6) with the parameters
(A1, A2, A3, A4 and A5) listed in that NRL Plasma Formulary[4,6].

2
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Figure 2. Selective resonant tunneling formula for T+T and T+3He fusion.

Table I. PARAMETER LIST FOR 3-PARAMETER FORMULA

D+T D+3He D+D (p+T&n+3He) T+T T+3He
C1 -0.54168 -1.13575 -60.2913 -36.7805 2.78836
C2

* 0.0055601 0.0030453 0.05068 0.00927803 0.000959464
wi -0.39189 -0.67162 -55.0122 -24.5337 -1.04059

*C2 is in unit of (1/keV) when E in the Eq. (5) is the incident energy in the laboratory system in
units of keV.

It is clear that the 5-parameter formula gives a comparable result only in the case of the D+T
fusion. In all the other cases, NRL 5-parameter formula is not able to give the right position of
the peak and the height of peak of the cross-section. On the other hand, this new 3-parameter
formula is able to give the right position and the height of the peak of the cross sections,
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because this new 3-parameter formula includes a new term in its denominator with a strong

energy dependence: i.e. 22
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3. A New Term in the Astrophysical S-function
The astrophysical S-function was introduced in astrophysics and nuclear physics in order to

extract the geometric factor,
2k


, and the Gamow factor,

2

1


from the cross-section. It was

thought that the remaining astrophysical S-function is supposed to be a slowly varying function
to express the INTRINSIC nature of the nuclear state. In Duane's 5-parameter formula, only
the 2

4 3( )EA A term shows the resonant nature of the nuclear state. Bosch and Hale attempted to

improve the energy-dependence of the astrophysical S-function using 2 polynomials with 9
parameters. In this 3-parameter formula, a new term has been introduced into the denominator
of the astrophysical S-function. This new term depends on the energy as rapidly as the Gamow
factor does. The comparison with the experimental data strongly confirmed that it is important
to include this new energy-dependence in the denominator of the astrophysical S-function, and
it is not simply an expression of the INTRINSIC nature of the nuclear state only(it includes a
factor related to Coulomb field outside the nuclear potential well).

4. The Matching of the Channel Width of Energy
In order to see the physical meaning of this new term, we rewrite the cross-section in the

form of Breit-Wigner formula.
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This new term is related to the incident channel width,
2

2

2

C
in


 , and the parameter wi is

related to the absorption channel width,
2

2

C

wi
a  . It is well known that the matching between

the incident channel width and the absorption channel width is very important for the resonant

tunneling process. When the incident energy, E, approaches the resonant energy,
2

1
0

C

C
E  ,

the cross-section has a peak. The height of the peak depends on the matching strongly. Only if
the incident channel width matches the absorption channel width, a in   ; then, cross-section of

resonance reaches its maximum possible. Otherwise, even if there is a resonance, it might not
be observable because of the mismatching between the incident channel width and the
absorption channel width( a in   or a in   ). In the case of condensed matter nuclear
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science, the incident energy is so low that the incident channel width, in , is very narrow. This

means that the absorption channel width, a , must be very narrow in order to observe the

resonant tunneling process. Therefore, only the long lifetime resonant state might appear as a
result of resonant tunneling at low energy. The neutron emission or gamma radiation could not
be the products of the resonant tunneling at low energy because their lifetimes of resonant state
are too short to match the incident channel width (i.e. a in   ). Only the weak interaction

process might be involved in low energy resonant tunneling of Coulomb barrier. This explains
the cold fusion phenomenon  “excess heat” without commensurable neutron emission or
gamma radiation. This is just the physical basis we have sought for 19 year in pursuit of a self-
sustaining heater without strong nuclear radiation.

5. Hot Fusion Data Imply Existence of Cold Fusion Phenomena
If we use a spherical square-potential well to describe the nuclear interaction inside the

nuclear potential well, the real part and the imaginary part of the potential depth and the radius
of the potential well (U1r, U1i, and a) are just the 3 parameters related to these 3 parameters in
our formula (C1, C2, and wi). Hence, it is possible to use the hot fusion data to figure out the
nuclear potential well. Once we have the nuclear potential well, it is possible to predict if there
is a resonance when the incident energy is approaching zero (i.e. in the case of CMNS).

In mathematics, the resonance simply means the wave function reaches almost its maximum
at the interface between the nuclear potential well and the Coulomb barrier, because this
boundary condition of the wave function will make the amplitude of the wave function
enhanced inside the nuclear potential well. Figure 3 shows the hot fusion data for the p+D → 
3He+γ fusion process. 

Figure 3.  HeDp 3
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We may fit these hot fusion data using U1r=-43.90 MeV, U1i=-0.0233 eV, and
a=3.9458×10-15 m, as shown in Fig. 4.

Figure 4. When Coulomb field is replaced by molecular well in a crystal, the nuclear potential is assumed
unchanged

When the deuteron and proton are trapped in palladium crystal, the nuclear potential is
supposed to be the same as that in the beam-target situation. Then we are able to calculate the
phase of the wave function at the boundary between nuclear potential well and the molecular
well in crystal (Fig. 4):

1 1 1 02

2
Re[ ] Re[ ( ) ] 2.98 ( )
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When the incident energy approaches zero, the phase of wave function just approaches 3π/2. 
This means that the wave function reaches almost the maximum at the interface between the
nuclear potential well and the molecular well in crystal. (See the dot-dash-dot line for the wave
function in Fig. 4). Hence, it predicts that the resonant tunneling may appear when deuteron
and hydrogen are trapped inside the palladium crystal lattice.

The match between the incident channel width and the absorption channel width implied that
the product of resonant tunneling in CMNS should be the product of a weak nuclear interaction.
The calculation shows that K-capture of electrons by deuteron followed by a decay of triton is
the possible candidate for this weak interaction[10]:

(9)

The anomalous helium-3 and the triton in condensed matter nuclear processes are the
experimental evidence [11] for this assumption. The recent successful repetition of 3 deuteron
fusion reaction experiments at NRL provided an additional strong evidence of this long lifetime
2 deuteron resonant state in the titanium crystal as well[12].

6. Conclusions
(1) Nineteen years ago, some nuclear physicists alleged that the cold fusion phenomenon is

contrary to all understanding gained of nuclear reactions in the last half century [13]. Indeed,
after careful study of the nuclear physics accumulated in the last half century it is found that the
hot fusion data themselves imply the existence of the cold fusion phenomenon.

(2) A 3-parameter formula is proposed to replace that 36 years old 5-parameter formula with
better fit to experimental data:

2

2
2 2

1 2 2

0

0

4 ( )
1 1

( )
2

( ) ( )exp[ ] 1
2 2 exp[ ] 1

2 2

E
E E

E
E

i a

a b a
i

a b a

w M

Z Z e M C C w
Z Z e M











 
  
  
     
         
 







(10)

Here E is the incident energy in the laboratory system, (Ma, Zae) and (Mb, Zbe) are the mass
and electrical charge of the projectile and target, respectively. For convenience, we substitute
all the constants in the formula, and leave only (ma, Za) and (mb, Zb) in this unified formula as:
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Here, Elab is the incident energy in the laboratory system in unit of keV. For deuteron incident,
(ma, Za)=(2,1), etc. (C1, C2, wi) is from Table I and II.

(3) Detection of neutrino emission from the metal deuterides would be a critical step for the
research of the condensed matter nuclear science because the selective resonant tunneling of
Coulomb barrier at very low energy must be accompanied neutrino emission which is the
necessary products of any weak interactions.

There are four possible sites for neutrino detection: DUSEL (South Dakota, USA), KamLand
(Japan), Gran Sasso(Italy), and Da-Ya Bay (Canton, China). The positive results of neutrino
detection from the metal deuterides would finally turn over the world view on CMNS research
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Abstract
Our study shows that the cross-section for fusion improves considerably if d-d
pairs are located in linear (one-dimensional) chainlets or line defects. Such non-
equilibrium defects can exist only in a solid matrix. Further, solids harbor
lattice vibrational modes (quanta, phonons) whose longitudinal-optical modes
interact strongly with electrons and ions. One such interaction, resulting in
potential inversion, causes localization of electron pairs on deuterons. Thus, we

have attraction of D+ – D
-

pairs and strong screening of the nuclear repulsion
due to these local electron pairs (local charged bosons: acronym, lochons). This
attraction and strong coupling permits low-energy deuterons to approach close
enough to alter the standard equations used to define nuclear-interaction cross-
sections. These altered equations not only predict that low-energy-nuclear

reactions (LENR) of D+ – D
-

(and H+ – H
-
) pairs are possible, they predict that

they are probable.

Introduction
The central idea of this paper is that the solid matrix in which LENR takes place provides

conditions such as: (1) confinement of deuterons (or deuterium atoms) in linear chains or in
line defects, (2) dynamical solid-state modes (phonons), which can store and exchange energy,
and (3) the strong interaction between appropriate phonon modes (particularly longitudinal-
optical modes) with electrons and ions. The resultant resonant D+-D- pairs in this environment
permit attractive forces and/or strongly-screened repulsive forces, rather than the normally-
expected strong-repulsive Coulomb forces between positively-charged nuclei. These options
are not available in a gaseous plasma, or in materials that lack (at least) short-range order.

It is a goal of this paper to provide an understandable, standard-physics basis (under special
conditions) for the extensive body of results presently available from LENR.1

Model
Let us consider a linear chain of deuterons surrounded by an equal number of electrons. The

Hamiltonian for such a system is 2

H = He + HL + HeL + A, (1)

where the electron contribution is
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He =  Em C+
m Cm +  tmn (C+

m Cm + h.c). (2)

Here the C+
m (Cm) denote the electron creation (annihilation) operators in the Wanneir state

|m>, at site “m” with spin . Em is the onsite single-particle energy of the electron and tmn = -
|t| is the nearest-neighbor hopping integral. The lattice Hamiltonian is

HL =  ħD m (d+
m dm + ½ ), (3)

where D is the vibration frequency of the deuterium atom D (taken as an Einstein oscillator)
and with d+

m (dm) denoting the phonon creation (annihilation) operators.

The interaction of electrons with the above phonon modes is described by

HeL = għD  C+
m Cm (d+

m + dm), (4)

where g is a dimensionless coupling constant. The last term in Equation 1, A, is a constant
negative energy due to negative space charge in the channel. Note that in a low-dimension
(one or two) structure, the potential energy between two deuterium atoms is much deeper and
negative, relative to that of atoms in a 3-D lattice.3 A suitable unitary transformation4,5 leads to
a displaced harmonic oscillator [d'

m  (dm + )] and, in the transformed total Hamiltonian, the
on-site single-electron energy E*

m = Em – Ed, with Ed = g2 ħD; the hopping integral (in
Equation 2)

t*
mn = tmn exp(-g)2; (5)

and the electron effective mass2

m* = me exp[Ed /ħD] = me exp[g2]. (6)

Even for a very conservative value of g2 = 1.6, this will give m* = 5me (see below Equation 9).

Let us now consider the situation of two deuterons and two electrons in a chain. This
introduces Coulomb repulsion (Ue) between two electrons about an atom at site “m” in the
same orbital state |m>, but having opposite spin. The displacement transformation

(C+
m)* = C+

m exp [-g (dm – d+
m)], (7)

gives the effective Hamiltonian and the various parameters are obtained as

E*
m = Em - Ed; Ue

* = Ue – 2 Ed ; and t* = |t| exp [- g2] (8)

For U < 2Ed, U* becomes negative. Thus, there is potential inversion for the 2 electrons in the
singlet state and they will form a small on-site localized pair, a sort of composite boson
(lochon)2,6. Under this condition, the D- state will be more stable (has lower energy) than the
neutral atom D (though not necessarily more stable than the D+ = d state). This would lead to
the existence of D+-D- pairs. They would exist in the resonating state, D--D+ D+-D-, further
reducing their energy and inter-nuclear distance.

Strong Screening
Bound electrons reduce the effective charge of nuclei. An occasional transfer of one such

electron between two deuterium atoms forms a transient electron pair within a D+-D- pair. At
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separations larger than the orbital radius of the electrons, this transfer changes a neutral
relationship to an attractive one. At separations smaller than a fraction of the orbital radius of
the electrons, it still gives a significant reduction in “effective” Coulomb repulsion between the
nuclei. This effective potential will be represented by

Ud* = ((e*)2/r ) = (e2/r) (1- exp [-as/L]) , (9)

where as is the strong-electron-screening length, L = (ħ/mL
*L) is the rationalized deBroglie

wavelength1 of the lochon, mL
* being the effective mass of the lochon, and L its speed (as

determined from its energy in the atomic and molecular potential wells of the two deuterons) .
This screening by lochons is a short-range effect and reduces the repulsive potential between
reacting nuclei (deuterons here). Screening by itinerant electrons is weak in this range
(relative to that of the bound electrons) and hence not considered here.7

The coupling into an optical-phonon mode, along with the attractive potential of the D+-D-

pair, briefly produces a nearly 1-D encounter that greatly increases the potential-well depth of
this short-lived “molecule.”

Penetration Factor and Cross Section
Next, we discuss the fusion reaction of a screened d-d reaction in 1-D. For an incident

particle of effective charge e*, the penetration factor P(l, Ea) decreases rapidly with its
decreasing total energy, Ea, where l is its orbital angular-momentum state. In this low-energy
situation, particles in an l = 0 state contribute most.8 We have:


0r

R

1/222
d

21/2
o dr]|)/r))(e*)/(2M-k(|[-2exp)(R)/E(V)EP(0, aa


0r

R

1/2
o

1/2
o dr]|)/r)(r-1(|k[-2exp)(R)/E(V a , (10)

where k is the wave vector of particle a, Md is the reduced mass of two deuterons, and with
Vo(R) = (e*2)/R:

ro = (e*)2 2Md/ħ
2 k2, R << ro . (11)

The integral requires careful treatment since, as r  0, it has a singular term. Hence,
resorting to an asymptotic expansion (a better approximation for expression of the integral as
r 0), we get,

P(0,Ea) = (Vo(R)/Ea)
1/2 exp [- (e*)2/ħ r] , (12)

where r is the relative velocity. The cross-section (a,b) of this reaction is

(a,b) = (constant / Ea) exp[-(e*)2/ħ r]

= (/k2) exp[-(e2/ħ r) (1 – exp (-as/ L))] , (13)

1 Several of the references herein use rather than  (the deBroglie wavelength), in their
equations. We follow suit.
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where k2 = (2 Md Ea / ħ) = Md
2 r

2 / ħ and Md, Ea, as , and L are as above. The critical
difference between this development9 and the prior work (standard model) is a factor of 2 in
the exponent that exists in the regular solution and is gone here (valid at least for r => R).

The key values in the present model are those calculated for the deBroglie wavelengths for
the lochon and the deuterons, as a function of d-d gap, and the value taken for as. This value is
the screening provided by the bound electrons/lochon and is given in Ichimaru7 (page 9) based
on the ion-sphere model. Normally this is ½ the sum of the atomic-orbital radii for the charge
state of the two atoms [aij = (ai + aj)/2]. In our model, aij = 0.53A for the D-D case and, since

we can ignore the radius of the bare deuteron, aij = ~ 0.3A for the D+ - D
-

case. So, we assume a
range of values between the initial value as = aij /2 (the Bohr radius divided by 2 since we

are using L in the equation) and that of the 1-D case (as described above and under the
appropriate circumstances), which will reduce as by up to an order of magnitude.

The value of L varies from ~10-9 down to ~10-10 cm, while the lochons accelerate between
the deuterons and the Coulomb field grows as the gap shrinks. This large lochon size, relative
to the nuclear-interaction distances, is a major limitation for strong screening. However, being
bound, the electron/lochon screening of the deuterons increases with kinetic energy (i.e., as
orbits shrink), rather than decreasing as is the case for free electrons. The 1-D nature of the
problem affects the electron s-orbital orientation, in that the electron/lochon direction of motion

is along the d-d axis, and therefore this localization and the velocity-induced shrinkage of L

(along the d-d axis) aids in the screening.

Reaction Rate
The reaction rate (per cm3 per second) for d-d- fusion with lochon screening is given by

Rdd = r*
dd KBTL

2 Nd
2/ħ [(e2/ħ r) (1 – exp (-as/ L)]

x exp [-(e2/ħ r )(1 – exp (-as/ L))] ; (14)

where r*
dd = ħ2/2 MN e2 is the nuclear Bohr radius for a pair of deuterons; MN is the average

mass per nucleon  1.66 x 10-24 gm; KB is the Boltzmann constant; T is the temperature (with

KBTL
2 having dimensions of energy x area); and Nd is the concentration of deuterons per unit

volume.

The model presented in the foregoing section is more appropriate for reaction on the surface
or defect-plane in the lattice. The reaction rate is the number of effective collisions of

deuterons per unit area per sec. To convert to this picture, set KBTL
2 => KBTL = energy x

length and set Nd => NS = number of deuterons per unit area (rather than per unit volume).
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The results of Equation 14,
modified for surfaces, are
plotted in Figure 1, taking some
acceptable values of the
parameters involved. However,
the figure plots the reaction rate
assuming that 100% of the
available lattice sites are
actively involved. It is likely
that only a percentage of the
sites can be made to contribute

to LENR. Three values of as/L

(1, 0.2, and 0.1) have been
selected for the lochon case.

Figure 1 The D+ - D
-

reaction
rate (for a surface), as a

function of D+ - D
-

separation
distance, for three ratios of

as/L (1, 0.2, & 0.1).

Conclusion
In the foregoing sections, we have presented a model incorporating conditions in the

condensed matter state that can facilitate fusion of deuterons aided by interaction of electrons
with phonon modes of the system. The cross-section of the reaction improves considerably
owing to the presence of d-d pairs in line defects and with strong screening provided by bound
electron pairs (lochons). However, only a mechanism, such as D+ and D- pairing can bring the
deuterons close enough to permit a modified standard nuclear model to predict LENR.

Recent experiments by several workers, in which the material (e.g., powder or particles), is
taken to be in the nanometer range, suggest that the creation of large surface area plays an
important role.10 These surfaces may provide the required active sites, in the 2-D geometry that
can harbor lochons and D+ + D- ion pairs. Our computed reaction rate is found to be > 1014 per
cm2 per second (Figure 1) for two-dimensional surfaces, in agreement with the estimate of
some workers.

The role of optical-phonon modes is important for their bringing the D+ + D- pairs together,
for coupling of ions to electrons, and as a source of resonant coupling to provide the required
surface-mode excitation (surface plasmon or phonon) that can lead to enhanced-optical
potentials. Recent work, on excitation of surface plasmon/polaritons with “tuned” lasers,11,12

indicates the importance of this mechanism, where the induced-optical potential aids the fusion
reaction by several orders of magnitude. The known presence of resonant D+ + D- ion pairs in
the solid state (coupled via optical phonons) greatly increases the d-d interaction cross-section
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by altering the shape of the Coulomb barrier to the extent of requiring a change in the equations
normally used in nuclear physics.
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Abstract
This paper gives further discussions and explanations on the time-dependent
quantum-mechanical behaviors of electron-clouds in 4D/TSC condensation
motion by Langevin equation, in comparison with steady ground state electron
orbits and their de Broglie wave lengths for D-atom and D2 molecule.

1. Introduction
The formation of 4D/TSC (tetrahedral symmetric condensate) at T-sites of a regular PdD

lattice under D-phonon excitation, or on topological (fractal) nano-scale surface of PdDx and/or
along interface of metal-oxide-metal nano-composite was proposed as seeds of deuteron-cluster
fusion to produce heat with helium-4 as 4D fusion ash1). Dynamic motion of TSC condensation
was quantitatively studied by the quantum-mechanical stochastic differential equation
(Langevin equation) for many-body cluster systems of deuterons and electrons under Platonic
symmetry2-6).

This paper gives further discussions and explanations on the time-dependent quantum-
mechanical behaviors of electron-clouds in 4D/TSC condensation motion, in comparison with
steady ground state electron orbits and their de Broglie wave lengths for D-atom and D2

molecule.

2. Condensation Motion of 4D/TSC by Langevin Equation
The basics of methods with Langevin equations for D-cluster dynamics, especially for D-

atom, D2 molecule, D2
+ ion, D3

+ ion, 4D/TSC (tetrahedral symmetric condensate) and 6D2-

/OSC (octahedral symmetric condensate) are described in our latest paper4) and book6).

First one-dimensional Langevin equations for D-clusters with the Rdd (d-d distance) are
formulated under the Platonic symmtery2,6) of multi-particle D-cluster systems with deuterons
and quantum-mechanical electron centers. Under the orthogonally coupled Platonic symmetry
for a Platonic deuteron-system and a Platonic electron system, dynamic equations for so-many-
body system of deuterons and electrons with metal atoms a simple one-dimensional Langevin
equation for the inter-nuclear d-d distance Rdd can be formulated, as we showed in our previous
papers4,6). The Langevin equation of electron-cloud-averaged expectation value of d-d distance
Rdd for D-cluster is given by,
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This is the basic Langevin equation for a Platonic symmetric D-cluster having Ne d-d edges and
Nf faces of “d-d-e” (D2

+) or “d-e-d-e” (D2) type. Here, R is the d-d distance and md is the
deuteron mass, Vs is the d-d pair trapping potential of either “d-e-d-e”-type (i=2) or “d-d-e”-
type (i=1) molecule. The first term on the right side in Eq. (1) is the total Coulomb force
converted to a one-dimensional variable R, of D-cluster system, and f(t) is the fluctuation of
force for which we introduce quantum mechanical fluctuation of deuteron positions under
condensation motion. The quantum mechanical effect of electron clouds is incorporated with
the second term of right hand side as “friction” in Langevin equation. Parameters for different
D-clusters are given in Table 1.

Table 1: parameters of D-cluster Langevin equation

Cluster Ne: Number of
d-d edges

K: Total
Coulomb Force
parameter

(keVpm)

Type of electron
trapping
potential on a
surface

Nf: number of
faces

D2 1 0 i = 2 1
D2

+ 1 0 i = 1 1
D3

+ 3 6.13 i = 1 6
4D/TSC 6 11.85 i = 2 6
6D2-/OSC 12 29.3 i = 1 24

By taking QM ensemble average with d-d pair wave function, assumed as Gaussian
distribution, we derived Langevin equation for 4D/TSC. By taking QM ensemble average we
obtained Eq. (2) for expectation value <Rdd> we obtained the time-dependent TSC-cluster
trapping potential3) shown in Eq. (3).
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Similar Langevin equation and trapping potential were derived for 6D2- ion molecule also4,6).
We compared central potential curve (at R’=Rdd ) in Fig. 1. The balancing to the Platonic
symmetry after distortion (deviation from symmetry) works by the 3rd term of Eq. (3). We
found that 4D(or H)/TSC can condensate ultimately to very small charge neutral entity and has
no stable or ground state. This may be the reason that we do not observe D4 molecule in nature.
On the contrary, the 3D+ molecule and 6D2- molecule have stable and ground states4,6).
Equation (2) was numerically solved by the Verlet method3,6), and the result is shown in Fig. 2.

Time dependent barrier penetration probabilities (as a function of Rdd, since we have one-to-
one relation between elapsed time and Rdd(t)) were calculated by the Heavy-Mass Electronic
Quasi-Particle Expansion Theory (Heavy Mass EQPET, HMEQPET) method3,6) .
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Figure 1. Comparison of cluster trapping potential between 4D/TSC and 6D2-/OSC. TSC condenses
ultimately to very small Rdd value (ends at Rdd-min=about 20 fm), while OSC converges at Rdd=about 40 pm

(corresponding to the ground state).

Figure 2. Numerical solution of Eq. (2) by the Verlet method3). Time is reversed starting from the
condensation time 1.4007 fs.
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The fusion rate is calculated by the following Fermi’s golden rule3,4,6),

WrPrPW ndndnd )(1004.3)(
2

0
21

0 


 (4)

Here Pnd is barrier factor for nD-cluster and <W> is the averaged value of imaginary part of
nuclear optical potential3,4). The extrapolation of <W> value to 4d fusion was made3) by using
the scaling law 5)( PEFW  with PEF-value which is given in unit of derivative of one pion

exchange potential (OPEP) (a simple case of Hamada-Johnston potential4) for the pion
exchange model). We estimated the next value of 4D fusion yield per TSC generation,

))(exp(1
0

44 dtt
ct

dd   (5)

Using time-dependent barrier factors, we obtained3)
0.14 d . This result means that we

have obtained a simple result that 4D fusion may take place with almost 100% yield per TSC
generation, so that macroscopic 4d fusion yield is given simply with TSC generation rate Qtsc in
the experimental conditions of CMNS.

The ultimate condensation is possible only when the double Platonic symmetry of 4D/TSC
is kept in its dynamic motion. The sufficient increase (super screening) of barrier factor is
also only possible as long as the Platonic symmetric 4D/TSC system is kept. Therefore,
there should be always 4 deuterons in barrier penetration and fusion process, so that 4d
simultaneous fusion should take place predominantly. The portion of 2D (usual) fusion
rate is considered to be negligible3). The order (or constraint) of condensed matter incubates
this6). Typical nuclear products of 4D fusion are predicted to be two 23.8 MeV α-particles, 
although the final state interaction of 8Be* is complex, and yet to be studied5,6).

3. Time Dependent QM Behavior of Electron Clouds
We consider now the principle of dynamic condensation motion of TSC in the view of

Heisenberg uncertainty principle (HUP).

At the starting condition of 4D/TSC (t=0), d-d distance Rdd was estimated to be the same
value (74.1 pm) as that of a D2 molecule. At this starting point, the mean electron kinetic
energy of one “d-e-d-e” face EQPET molecule out of TSC 6 faces was 17.6 eV (19 eV by
semi-classical model6)). During the non-linear condensation of TSC, the size of “d-e-d-e”
EQPET molecule as a face of 4D/TSC decreases from Rdd=74.1 pm at t=0 to Rdd=20.6 fm at
t=1.4007 fs. In the view of HUP, electron wave length should decrease accordingly to the
decrement of Rdd. At around t=1.4007 fs, the mean kinetic energy of electron for “d-e-d-e”
EQPET molecule was estimated3) to be 57.6 keV. The original Langevin equation for D2

molecule, before the quantum-mechanical ensemble averaging is done, as given by,
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We consider the averaged force-balance between the first term and the second term of right
side of Eq. (6), with ensemble averaging by weight of “adiabatic electron wave function” of
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modified 1S wave function with decreased de Broglie wave length during every small time step
interval. Ree is the distance between two quantum mechanical electron centers.

We understand that the effective quantum mechanical wave length of trapped electron in
TSC has decreased dramatically in the 1.4007 fs condensation time. The estimated trapping
potential depth of TSC at t=1.4007 fs was -130.4 keV. This state is understood as an adiabatic
state in very short time interval (about 10-20 s) to trap such high kinetic energy (57.6 keV)
electrons in very deep (-130.4 keV) trapping potential, to fulfill the HUP condition. By the
way, mean kinetic energy of relative d-d motion was estimated3) to be 13.68 keV at this
adiabatic state, which also diminished relative deuteron wave length trapped in the adiabatic
TSC potential. In this way, very short Rdd (in other words, super screening of mutual Coulomb
repulsion) was realized in the dynamic TSC condensation in very fast condensation time
(tc=1.4007 fs) to give however a very large 4D simultaneous fusion rate3,4).

We know that the ground state electron orbit (sphere) of D (or H) atom is the Bohr radius
(RB=52.9 pm). The mean kinetic energy of 1S electron is 13.6 eV, the de Broglie wave length
of which is 332 pm. And we know 2πRB=332 pm to satisfy the continuation of 1S electron
wave function (same with the Bohr’s condition) by one turn around the central deuteron. No
other states with shorter or longer wave length can satisfy the condition of smooth continuation
of wave function, as ground state, for which we must in addition keep the condition that mean
centrifugal force equals mean centripetal force.

On the other hand, electron orbit in a “d-e-d-e” quasi-molecular system of a face of 4D/TSC
under time-dependent condensation makes a spiral track, finally getting to the center-of-mass
point of TSC, with tail of time-varying “relatively long” effective wave length.

Similarly to the case of a D-atom, the ground state electron wave function of D2 molecule has
a steady ground state torus (ring) orbit of two centers of electron clouds4,6). The mean kinetic
energy of a centrifugal electron motion around the center-of-mass point (middle point of d-d
distance) was calculated to be 17.6 eV, de Broglie wave length of which is 234 pm and equals
to 2πRB/1.4142 to satisfy the smooth continuation of electron wave function along the torus
orbit around the center-of-mass point. Dynamic motion of “d-e-d-e” 4 body system by
Langevin equation (Eq. (6)) is illustrated in Fig. 3-a. When starting with an arbitrary electron
wave length (or momentum), the center of electron cloud draws spiral orbit to converge finally
to the steady torus (ring or circle) orbit with 234pm one turn length which equals to the ground
state effective electron wave length of D2 molecule. When we have the strong constraint of
TSC trapping potential, center of electron cloud draws spiral orbit time-dependently as shown
in Fig. 3-b without converging ground state. Calculated mean (eigen) energy-values of D2

molecule are Egs (ground state system energy) = -35.1 eV, Ec (mean Coulomb energy) = -70.3
eV, Ed-d (mean relative deuteron energy) = 2.7 eV and Eke (mean electron kinetic energy) =
35.2 eV for two electrons (17.6 eV per electron)3,6,7).

As a result, centrifugal electron motion in a “d-e-d-e” face draws a spiral curve conversing to
the central focal point as illustrated in Fig. 3-b. If we do not have the strong centripetal
Coulombic condensation force by the first term of Eq. (1) right side, for 4D/TSC, “d-e-d-e”
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EQPET molecule must go back and converge to the ground state orbit of D2 molecule, as
drawn in Fig. 3-a.

4D/TSC has no steady ground state and effective electron wave length of a “d-e-d-e” face
varies from time to time as illustrated in Fig. 3-b.

The spiral motion of an electron center under 4D/TSC condensation is illustrated with an
expanded scale (right figure), compared with the estimation of mean rotation number of
electron in each discrete change of Rdd steps, as given in Fig. 7 of our detailed paper to
JCMNS7).

The electron center rotates about 6 times in each step of Rdd changes, as shown in Fig. 7 of
Ref. 7. This means the time-dependent electron wave function distributes with “long” tail along
the spiral orbit. This situation does not contradict the Heisenberg uncertainty principle, as
steady ground state does not exist and particles are non-linearly moving from time to time.

4. Conclusions
A further explanation on 4D/TSC condensation motion by quantum-mechanical stochastic

differential equations (Langevin equations) has been given in this paper.

Figure 3. Time dependent behavior of effective electron wave length, a) D2 molecule, b) “d-e-d-e” EQPET
molecule of 4D/TSC

The electron orbit in a “d-e-d-e” quasi-molecular system of a face of 4D/TSC under time-
dependent condensation makes a spiral track, finally getting to the center-of-mass point of
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TSC, with a tail of time-varying effective wave length. This does not contradict the Heisenberg
uncertainty principle. A more detailed paper on this work will appear in JCMNS7).
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Introduction to Challenges and Summary

The field of LENR has all the challenges of any accepted part of science, plus the burden of
gaining acceptance and recognition as a legitimate field of scientific inquiry. The normal
challenges include the design and performance of sound experiments, and the development and
application of theories to explain past observations or make predictions. They also include
communications of results through discussions, presentations and journal articles. Now, all of
these things do apply to LENR, although it is difficult or impossible to get many of the
appropriate journals to even consider papers from scientists in the field.

The problem of LENR becoming a recognized field of scientific research is very challenging.
Acceptance as a part of science would have far reaching consequences. Now, in the US,
responsible people in both the Congress and the Administration correctly assert that they are
not scientists. They are waiting for the scientific community to examine LENR and pronounce
judgment, not on its details, but only whether or not it should be considered as a science.
Administrators in the US Patent and Trademark Office, who are not scientists, have the same
refrain. They await scientists with relevant competencies to examine information on LENR and
render an opinion on its being, or not being, part of science. Those responsible for
documentation and communication of scientific results, the editors of scientific journals and
magazines, also correctly assert note that they are not scientists (even though many of them
were scientists earlier in their careers). They want others, who are now practicing (publishing)
scientists, to examine results on LENR and say what they think about the field as a science.

So, why is are key scientists individually and the scientific community, broadly considered,
unwilling to (a) examine the evidence, (b) draw conclusions about the nature of work on LENR
and (c) communicate them to other scientists and the public? Part of the reason is that most
scientists are busy with their own research, and not willing to spend time on examining LENR
information. There is, after all, little likelihood of either support or fame in such an activity.
Some scientists are fear-filled as a result of the residual poor reputation of the field. They are
afraid that their reputations would be tainted and, maybe, their careers destroyed. Then, there
are a few very prominent and vocal ex-scientists who speak out against the field even though
they seem not to be aware of key results from LENR research. They may have had strong
scientific careers at one time, but they no longer contribute to the advancement of knowledge
by actually doing research and publishing the results. Whatever motivates these people, money
or ego or anything else, they do themselves and the field a real disservice. This is especially
true in the case of LENR.

It is uncertain if and when the current research phase of LENR will be the basis for practical
energy sources. However, the prospects of small distributed nuclear power sources, without
dangerous prompt radiation nor significant radioactive waste, deserves consideration. Those
possibilities are in addition to the wonderful scientific challenge of understanding how it is
possible to stimulate MeV nuclear reactions by using eV chemical energies.

Whether or not LENR energy sources prove to be important, there are some basic
requirements for the operation of LENR experiments. One of the most fundamental is
replication. Hence, this conference included an invited paper by McKubre on replication. He
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defines it as the ability to demonstrate an effect of interest on demand. In that paper, McKubre
provides an important summary of the temperature dependence of the ability to produce excess
heat, as summarized in this table:

Temperature Range Energy Gain in a LENR experiment
Below 70°C 0 to 5 %
70 to 99°C About 10 %
At boiling Up to 150 %

McKubre ends with the assertion that replication, however significant, is not as important as
proving that the energy produced in LENR experiments is nuclear and not chemical.

Swartz confronted the critical challenge of getting enough electrical power out of a LANR
cell to do useful electrical work, and to feed back power to drive the cell in a steady-state
condition, which he calls “renewable electricity”. Such as system is termed a “Self Sustaining
Electrical Generator”. Swartz is particularly concerned with the poor energy conversion in
going from heat to electricity, which he found to be in the range 13-19%. He also measured the
ability to use energy from LANR to operate fuel cells. But, that was found to have high loses in
both gas generation (13-20%) and water (energy) generation (54-69%). While high efficiencies
were not achieved, this is an important start on the serious electrical generation from the heat
generated by LANR electrochemical cells.

The paper by David and Giles is in a class by itself. It seeks to directly convert the results of
LENR into a voltage, rather than into heat that might then be transformed into electricity. Their
gas phase device contains a mixture of powders of Pd and semiconductors. Voltages of 0.5 V
have been measured. These authors note that the power to weight ratio in their device is similar
to that of the first atomic pile made by Fermi and his team in Chicago in 1942.

The question of the Fleischman-Pons effect being real and nuclear is the focus of two other
papers in this section. In the first, Johnson and Melich provide a Bayesian probabilistic analysis
for the criteria offered by Cravens and Letts as being necessary for the operation of the FPE.
That set of criteria is in the first paper in the section on Heat Measurements in these
Proceedings. They show that, on the basis of only eight papers, the likelihood ratio (the FPE
Effect is real/the FPE Effect is not real) is over 10. This analysis could be usefully extended to
include more papers. However, with only those few papers, the conclusion of the reality of the
FPE effect (and its subsequent conclusion of necessarily being nuclear) is already quite robust.

Kowalski also confronts the question of nuclear or not? He summarizes results for an
affirmative conclusion in what he calls the “protoscience” of LENR. Excess heat, its correlation
with Helium production, changes in isotope distributions, production of new elements,
chemically-induced changes in radioactive decay rates and the emissions of high-energy
photons and particles are cited.

Grimshaw provided a study of modern approaches to Condensed Matter Nuclear Science. He
advocates what is called “Open Source Science” or OSSc. This idea is modeled on the
widespread use of open source software, for which there are many successful examples. He
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notes that the common usage of the internet by LENR researchers for posting papers and for
discussions already makes the field part of Open Source Science. He asserts: “The prospects of
cold fusion success may be significantly enhanced by extending the current informal and
implicit use of OSSc-type methods to more organized and explicit deployment under the
sponsorship of a recognized professional organization such as the International Society for
Condensed Matter Nuclear Science.”

A summary of ICCF-14 was written by Passel, and is the final paper in this section. In that
paper, he provided both a sociological context and a review of a sampling of the results
presented at the conference. Passel notes correctly that the field, although 20 years old, has
done only a very small fraction of possible experiments. Many of us, who have been in the field
since the outset, look forward to the day when LENR is a part of recognized scientific research
with funding to attract new scientists with useful skills and equipments. Then, many more of
the needed experiments will be done and reported.
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The Importance of Replication
Michael C. H. McKubre

Director, Energy Research Center
Principal Scientist in the Materials Research Laboratory

SRI International, Menlo Park, California

Abstract
Much discussion in the Condensed Matter Nuclear Science or “Cold Fusion”
fields centers on the subject of replication. It is a topic that comes up in
essentially every conversation about the Fleischmann Pons Effect (FPE).
Assembled here is a set of essentially personal views on this subject of
replication.

Why is replication important?
We might begin with the dictionary definition of replication as the action of copying or

reproducing something [1]. More specifically in science we mean the repetition of a scientific
experiment or trial to obtain a consistent result. Note that replication is defined in terms of
reproduction and that the key test in science is consistency, not identicality.

Reproducibility is the “Touchstone” of Scientific Method. Scientific method does not work if
you cannot perform trials with different input parameters, learning something certain from the
observed change in output. Critics argue that for something to be “not reproducible” means that
it is “not science”, implying that it is “not real”. This last inference is a false argument. Reality
and reproducibility are different concepts.

If the effect one is attempting to study is rarely seen, then it is hard to study. It would be a
great advantage for experimenters to have a more reproducible effect. But its lack does not
make the effect unreal. Without quantitative reproducibility it is harder (but not impossible) to
perform parametric studies which are the basis of the empirical method that we use to gauge the
effect of input variables that should – or should not – influence the effect under study.

What does it mean to “replicate”?
Replicability conveys the ability to demonstrate the effect that you are observing and

studying on demand. We can extend the definition and difficulty of replication to include the
ability to transport and transplant a successful experiment from one laboratory to another. This
is something that the group at SRI has been very much involved with. In the extreme case we
would like the ability to interchange experiments between laboratories on the basis of a written
instruction set alone. This is more or less the basis of US Patent Law that applies the test of a
fictional “person having normal skill in the art” following written instructions (the Patent).
Although we would consider ourselves to meet the standard of “normal skill” our experience in
replication at SRI, in essentially every instance, written instructions alone have been
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insufficient to allow us to reproduce the experiments of others. It is not clear that this inability
is limited to the FPE; other classes of replications have not been attempted.

Another extreme and desirable condition particularly on the pathway to application is the
ability to reproduce (in every case) the magnitude and timing of the effect. If one has an effect
completely under control then the input variables lead immutably to the output variables. In this
extreme case it is not necessary to perform the experiment, the result is predetermined. To have
complete empirical understanding requires a comprehensive, quantitative, fundamental
understanding of the effect under study. This can be based on physical theory, although it
should be noted that many physical laws that represent apparently entirely reproducible and
predictable phenomena are not so based.

Have we succeeded?
More particularly, to what extent have we succeeded? The answer depends on what one is

looking at; what effect, what evidence? We have succeeded in a number of regards and I will
go through some of the examples and review some evidence. It is appropriate to note that a
number of effects claimed in the CMNS field have not been replicated with sufficient rigor or
diversity to have achieved widespread support of success.

We have certainly successfully transported and replicated the Fleischmann Pons Effect, by
which is meant the production of nuclear level heat from the electrochemical stimulation of the
heavy water – palladium system. This effect has been observed by hundreds of people in
dozens of laboratories around the world, and published in hundreds of papers as recently
reviewed [2, 3]. In fact the very breadth of diversity in experiment and calorimeter choice has
contributed to the illusion of irreproducibility (although, as will be argued later, the primary
cause of apparent irreproducibility is the lack of measurement and control of variables critical
to the effect).

The observation of 4He also appears to meet the criterion of transportability. Miles and Bush
were the first to demonstrate semi-quantitative correlation between the rates of creation of 4He
and excess heat [4]. That effect has now been observed in a number of laboratories around the
world [5-7] including SRI [2, 8] with considerable assistance from Dr. Benjamin Bush. The
Case experiment was successfully replicated at SRI [2, 8]. However, we were not able to
replicate this experiment simply based on written instructions alone, and required the
intervention of Dr. Leslie Case. The Arata experiment in its original form involving electrolysis
of a double structured cathode [7] was successfully replicated at SRI [2, 8] after soliciting help
from Professors Arata and Zhang. Again, however, we were also not successful in replicating
this experiment simply based on published materials.

Experiments involving laser triggering of excess heat by laser triggering of deuterium loaded
palladium cathodes with specially modified surfaces were initially discussed by Letts and
Cravens [9]. This class of experiments has been successfully transported from laboratory to
laboratory although again requiring hands-on tuition and involving long periods of unexplained
failure [10-12].
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At SRI we have been unsuccessful in a number of attempts at experiment replication. We
were not able at any time to reproduce the claims of heat from nickel – light water electrolysis
experiments. We were able uncover one source of systematic error in the experimental
procedures involving large area nickel – carbonate electrolyte experiments that blunted our
interest. This inability should not be taken to mean that the claims are wrong or an effect not
real, particularly in light of previous failures to replicate before personal, hands-on guidance
was sought. We were not able to replicate the Patterson-CETI experiments [13]. Despite the
very able hands on support of Dr. Dennis Cravens we were never able to observe an excess heat
effect for this experiment in our mass flow calorimeters, although it is now understood that an
important experimental element may have been lacking. A similar situation exists in respect of
the Stringham [14] ultrasonically induced Pd-D2O excess heat effect using SRI mass-flow
calorimeters, although this condition of uncertainty was exacerbated by the complexities of
input energy measurement and coupling between the ultrasonic power source and the
transducer and experiment.

These last two cases (Patterson and Stringham) highlight a feature and two rules to be
observed in any attempt to replicate calorimetrically an already difficult experiment and study a
fragile effect.

i. The calorimeter is part of the experiment. This is true whether the “effect” is a
systematic error or an unexplained heat source. Changing the calorimeter may
change the triggering or amplitude of the phenomenon under test. One simple
example of this phenomenon is the extent to which the unaccounted excess heat
changes the temperature of the experiment; other feedback systems are possible.

ii. The experiment cannot be compromised and become subordinate to the
calorimetric needs. If the experiment needs to be changed in any significant way
to accommodate the requirements of the calorimetric method that is preferred (by
some criterion or that happens to be on hand), then the test of replication is
compromised. This condition can be relaxed only after all variables critical to the
effect are known and measured.

To the extent that it occurs, the lack of reproducibility is reflected in the magnitude, timing,
gain, and termination of the effect. We perform intentionally identical experiments repeatedly
and obtain clear evidence of the effect, but with variable (and inconstant) magnitude, variable
initiation time, or the power and energy ratios output:input are not in every case the same. Even
the termination of the experiment is not fully under experimental control. One may turn the
stimulus off, discontinuing laser, ultrasonic, electrochemical current or other stimulus, and still
continue to observe the effect, sometimes requiring minutes, hours or even days to decline to
the thermal baseline. The effect may persist after discontinuation of all externally generated
stimuli, the so-called “heat-after-death” or more logically “heat-after-life” effect. Thus we
cannot even stop our experiments always on demand and we do not yet have quantitative
reproducibility in any case of which I am aware.

Every one of the CMNS subtopics still needs further research. To get from where we are to
where we need to go requires a substantial level of physical materials support. Much as it was
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in the early days of semiconductors, today it is our materials that are letting us down. In current
FPE studies it is the metallurgy of palladium that is the principle barrier to complete
quantitative replicability. On the other hand we do have a limited empirical model. We are able
to explain experiment failures and the failure to produce excess heat in terms of our inability to
meet certain input conditions: loading, deuterium flux, input stimulus. This ability to explain
failures, and thus learn from them, is very valuable.

Why are there failures?
At this point a reasonable question might be: if you know what you need to do, why can’t

you always do it? Why is there any degree of irreproducibility? What are you waiting for? The
answer is straightforward: the material conditions of our experiments are not completely under
our control. Solids are more complex than liquids; liquids more complex than gases or plasmas.
The solid:liquid interface may be the most complex structure of all material science. This is a
structure that we are only just beginning to understand in any level of detail and are still
struggling to control.

Electrochemistry takes place at an electrified interface between two “difficult” materials,
neither of which are fully under our control. In the early days of studying the FPE at SRI
experiments were designed to probe the parameters of reproducibility. Sets of 12 cells were
prepared, intentionally identically, and operated simultaneously to monitor the time evolution
of electrochemical and physico-chemical parameters believed to be or potentially pertinent to
the FPE.

A single length of palladium wire was used from a known source and sectioned into 13
identical lengths (12 active electrodes plus a reserved blank). These wire sections (typically 3
or 5 cm in length and 1 or 3 mm in diameter) were machined to remove surface damage and
inclusions, spot welded with 5 contacts (one cathode current and 4 wires for axial resistance
measurement), annealed, surface etched (to remove surface contaminants) and mounted in 12
identical cells of the type shown in Figure 1. These processes all were performed in the same
batch and by the same person. The twelve cells were filled with the electrolyte from a single
source and then operated electrically in series, in a 3 x 4 matrix in the same constant
temperature chamber.

The variables measured continuously were current (one measurement), cell voltage, pseudo-
reference cathode potential, temperature and electrical resistance (D/Pd loading) all being
monitored in a multiplexed manner with the same instruments. Intermittent measurements were
made of the cathode interfacial impedance. With 12 intentionally identical experiments, every
one behaved differently. Not only in terms of their heat production, significant and marked
differences were observed in: the current-voltage-time profile for both the cell voltage and
reference potential; the ability and willingness of each electrode to absorb deuterium measured
by the resistance ratio-time curve; the maximum loading achievable; the interfacial kinetic and
mass transport processes reflected in the interfacial impedance. Every one of these parameters
was importantly different for each of the 12 electrodes.

This set of experiments was repeated several times in an attempt to understand the origins of
the irreproducibility, and therefore control it. Trace impurity differences were observed to be
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contributory and these divided into two sets: deleterious impurities (poisons) that we learned to
avoid; impurities that were beneficial to high loading in controlled amounts. This was a highly
useful (and somewhat surprising) exercise. Although we were able to make progress and reduce
the dispersion, we were not able to control the irreproducibility simply by electrochemical (and
trace chemical) means. We continued to operate sets of cells in what we called “farms”,
selecting the most promising for promotion into calorimeters of the sort shown in Figure 2.

Figure 1. Electrochemical cell for loading and calorimetric studies.
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Figure 2. Labyrinth Mass Flow Calorimeter incorporating Degree-of-Loading Cells
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Four important understandings developed from these intensive studies at SRI of deuterium
loading and calorimetry:

i. Irreproducibility in FPE experiments can be fully or at least sufficiently explained
in terms of the electrochemistry of loading D into Pd.

ii. In the absence of a measure or knowledge of the D/Pd loading the experimenter
has no basis to judge whether an experiment could or should have produced
excess heat.

iii. After basic precautions are taken the irreproducibility of loading and interfacial
kinetics is not largely or even primarily controlled by the electrolyte or the
electrochemistry, it is controlled by the bulk palladium metallurgy.

iv. An empirical and near quantitative understanding of the measured magnitude of
excess heat effects, and more particularly of the failure to achieve the FPE, can be
obtained from measurements made of the controlling variables, and the failure to
achieve critical threshold values.

If the metallurgy varies so greatly between adjacent sections of the same wire, annealed and
surface treated in the same way and at the same time, how great might the difference
(irreproducibility) be between metal samples from different sources? Until recently we have not
had sufficient resource of time, money or talent to begin a serious campaign to understand the
issues of materials irreproducibility as these pertain to the defect and impurity structure of
polycrystalline palladium. Many people recognized this as one of or the most important
problems to be faced right from the beginning in 1989 or before, Fleischmann, Bockris, and
Huggins amongst others.

Several people have taken up the challenge of palladium metallurgy with limited resources,
amongst others Imam at NRL, Letts in his own lab and Violante at ENEA. These efforts have
resulted in significant progress and even patents. Most recently the efforts of Vittorio
Violante’s group to control the metallurgy and surface morphology of palladium foils has
contributed significantly to the formal laboratory-to-laboratory replication of Energetics FPE
results at ENEA and SRI [15]. Recent experiments at ENEA and NRL [16] have demonstrated
that identical annealing and rolling treatments of different starting batches of palladium results
in markedly different foil characteristics. To make rapid progress into the light of
reproducibility, significant resource must be directed as was done previously for
electrochemistry, to identify those characteristics of bulk palladium that are crucial and those
that are detrimental.

There has been some discussion of “hidden” variables; a controlling or contributing
parameter that so far remains unidentified. In a difficult experiment or situation it can be
comforting but also debilitating to attribute failure to a hidden agent. Without further empirical
knowledge or theory to guide us, the only rational position is the middle ground. We must to
proceed along the path of increasing control of the electrochemical and metallurgical variables
that we understand and can measure, in the attempt to exert full control over the FPE. Along
this path we need to remain alert to the possibility of a critical undiscovered parameter.
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Much of this uncertainty would be resolved and a great deal of tedious and repetitious matrix
study avoided with a theory to guide us on the path and point towards the answer. While the
FPE is the first and most concrete demonstration of a condensed matter nuclear effect it is
highly unlikely that this is the only or best manifestation of a new physical effect. Either by
means of theory or ingenious engineering it is likely to be far more practical to avoid the
challenges and limitations present in the electrochemical loading of bulk palladium rather than
climb the mountain of ever increasing materials control of difficult systems.

What have we accomplished so far?
This is not intended as a review but simply is a set of examples taken from the works at SRI

and our immediate collaborators. By 1992 we had demonstrated a nuclear scale heat output,
and had determined that the effect was real if you controlled the loading variable. There was
also an initiation effect that we (and others) had discovered at that point. Figures 3 and 4 show
two of the controlling variables, the effect of current density and D/Pd loading on the excess
heat effect [2, 3].

By 1995 we had uncovered the importance of flux, the movement of deuterium through the
interface and that this was not an equilibrium effect, and we had formed these various terms
into an empirical heat equation [2, 17]. Between 1996 and 1998 we measured associated
nuclear products, specifically 4He [2] following Miles in 1992 [4]. By 2000 we had measured
ash uncorrelated with heat (3He). Figures 5 and 6 show our results replicating the Arata double-
structured (DS) cathode electrolysis experiment [8]: Figure 5 plots the excess power measured
in heavy and light water electrolyte, and the percentage excess in heavy water; Figure 6 shows
the profile of 3He measured through the wall of the DS cathode produced by the disintegration
of tritium diffusing from the inner void where it was created, to the outer electrolytic surface.

In 2003 we published [10] a replication of the Letts-Cravens laser triggering result [9] and a
significant new result came in 2007 working in collaboration with ENEA and Energetics. As
discussed above the knowledge gained at ENEA helped achieve an improved control (if not
mastery) of the palladium metallurgy. The knowledge developed at Energetics using the Dardik
SuperWave concept enabled us to achieve much greater reproducibility in the control of
loading and interfacial deuterium flux. With this improved understanding we gained a higher
degree of command over two parameters crucial to the production of excess heat.

As a consequence we were able to achieve high levels of reproducibility in excess heat
production. Table 1 shows the complete set of experiments performed at SRI [15, 18] following
Energetics protocols and SuperWave current excitation profiles [19], in all except one case
using Pd foil cathodes fabricated at ENEA [16]. The rows labeled “E” were performed at SRI
with Energetics electronics and data acquisition; those labeled “S” were performed at SRI with
SRI electronics and data acquisition. Of the 15 experiments performed in the latter mode, 11
(73%) demonstrated power excess at or above the 5% level that was determined to be the
calorimeter 3 accuracy.
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Figure 3. The effect of Electrochemical current density on excess heat production in FPE electrolysis
experiments.

Figure 4. The effect of deuterium loading on excess heat production in FPE electrolysis experiments.
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Figure 5. The effect of input power (and time) on excess heat production in Arata DS cathode experiments.

Figure 6. Logarithmic diffusion profile of 3He following on excess heat production in Arata DS cathode
experiments.
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Table 1. Energetics Replication Results

Cell - Cathode Min. Max. Excess Power Energy

R/R° D/Pd % of PIn (mW) (kJ)

1 9-7 E Lot A 1.77 0.895 <5%

2 11-8 E L5(2) 1.67 0.915 60% 340 514

3 12-9 E Lot A 1.84 0.877 <5%

4 15-7 E L5(1) 1.77 0.895 <5%

5 16-8 E L5(4) 1.86 0.871 <5%
6 17-9 E L1(1) 1.55 0.939 20% 460 407

7 21-7 E # 830 1.92 0.836 <5%

8 22-8 E L5(3) 1.8 0.888 30% 200 188

9 35-7 S L17(1) 1.32 0.985 12% 1800 553

10 35-8 S L17(2) 0.95 1.059 13% 2066 313

11 35-9 S L17 1.39 0.971 1%
12 43-7 S L14-2 1.73 0.903 80% 1250 245

13 43-8 S ETI 1.63 0.923 5% 525 65

14 43-9 S L14-3 1.61 0.927 1%
15 51-7 S L25B-1 1.55 0.939 12% 266 176

16 51-8 S L25A-2 1.52 0.945 5% 133 14

17 51-9 S L19 1.54 0.941 43% 79 28

18 56-7 S L24F 1.55 0.939 15% 2095 536

19 56-8 S L24D 1.84 0.877 4%

20 56-9 S L25B-2 1.56 0.937 3%
21 57-8 S Pd-C N.A. N.A. 300% 93 115

22 58-9 S L25A 1.69 0.911 200% 540 485

23 61-7 S L25B-1 1.63 0.923 50% 105 146
E = Energetics and S = SRI Data Acquisition.

Calorimeter

In addition to the high levels of loading and reproducibility of excess heat production this set
of experiments had several other desirable characteristics. Experiment failures (null results)
were understandable in terms of our inability to meet and exceed known threshold criteria:
loading, maximum loading, loading duration and interfacial deuterium flux.

One striking feature is the power of the SuperWave in moving deuterium through the
interface. Figure 7 shows the measured resistance ratio and deuterium loading calculated for
three points in the 20 minute SuperWave current exercise cycle: the minimum, mean and
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maximum values. From these values we can calculate the net interfacial flux of deuterium
absorption and desorption. For an electrode with an active surface these values were measured
to be as high as 20 mA cm-2. This value is higher by far than any previously measured at SRI
using dc or any other waveforms except under strong transient conditions.

Figure 7. Resistance ratio and deuterium loading during SuperWave electrolysis of an 80 × 7 mm 50 mm
thick ENEA Pd foil in 0.1 M LiOD.

The existence of data sets demonstrating high power gain and, even more particularly, high
energy gain offers several specific benefits to FPE researchers:

i. High power gain and large values of excess power compared to calorimeter
accuracy makes it easy to rule out systematic mismeasurement of input power or
temperature as being the source of the FPE, even in discussions with individuals
unfamiliar with calorimetric principles and practice.

ii. High energy gains and large values of integrated excess energy (often expressed in
terms of eV per Pd atom) makes it easy to rule out energy storage or anomalous
unseen chemical effect as being the source of the FPE, even in discussions with
scientists and engineers not having specialized knowledge of materials science
and chemistry.

iii. One spectacular experiment performed at Energetics designated as experiment 64
exhibited energy gains exceeding 25 and accumulated several keV/Pd atom of
energy at temperatures at or above the boiling point of water [19]. Results such as
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these suggest the potential for practical application and the possibility that FPE
studies may move from experiment and research into engineering and
development.

Conclusions
At least in this field the “reproducibility” standard is generally far harder to meet than most

experimenters or the US Patent and Trademarks Office anticipate. The reasons for this are
several:

1. Particularly in the early stages of invention the experimenter himself or herself may not be
aware of all critical details of his or her experiment, and succeeds because of a knack or
skill or habit that is not recognized and not easily transported or identified except by direct,
careful observation.

2. All communication is imperfect. The advantage of written communication is that it creates
a record capable of being improved. However writing suffers two great weaknesses. It is
slow and painful and therefore shortcuts are taken and tedious and seemingly superfluous
detail truncated or eliminated. It is therefore incomplete. Because of its permanent nature
and the possibility (usually viewed as certainty) that posterity will be watching, scientists
tend to make written reports appear far more rigorous than their actual procedures. The
written record may therefore be over-complete and over-complex while possibly being a
false or misleading report of what in fact was done.

3. In my experience scientists cannot resist the compulsion to improve. When first they hear
of an experiment they begin immediately to think of a new and better way to get a bigger
and more interesting effect. Don’t! If the effect is artifactual it is important to reproduce the
artifact that may precisely lie in the means of temperature measurement or the experiment
geometry, etc. If the effect is real it may depend critically a peculiarity of the pump or
power source, or on an interaction between variables that is unseen, unanticipated or
misunderstood.

From nearly twenty years of work at SRI two important conclusions have emerged. Scientists
can sometimes be wrong, and often oversimplify, but they are not incompetent or dishonest.
Even after significant effort (and none of the experiments we worked on in this field required
less than 3 months sustained effort to form even a provisional opinion), don’t assume you were
lied to or that “the other guy” is “an incompetent boob”. If it doesn’t work it is your fault.

Reproduce exactly first. Work with the originator directly, in person, understand their
procedures at every step until the original effect is recreated. In 1996 Lonchampt et al [20] set
themselves the task of reproducing the original FPE work, in their words “simply to reproduce
the exact experiments of Fleischmann and Pons - to ascertain the various phenomena involved
in order to master the experiments”. The phrase underlined is critical. Only from the point of
mastery can systematic effects be studied, whether these are errors, artifacts or new physical
processes.

As far as I am aware Lonchampt and his team were and remain the only group ever to
attempt an exact engineering replication of the original Fleischmann Pons experiment. It helps
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considerably that they were engineers, not scientists. Lonchampt et al may also have been the
only group ever to publish a paper with the goal of FPE replication in its title [20]. They also
were successful and closely specified the conditions under which replication was possible:

i. The Fleischmann Pons calorimeter with precautionary measures taken is simple
and precise.

ii. Their calorimeter is very accurate and well adapted to study cold fusion.
iii. The maximum error might be in the higher temperature range, and under any

condition should not exceed 1% of the input power.
iv. The effect measured [now called the FPE] is:

- below 70°C, between 0 and 5%
- between 70°C and 99°C, about 10%
- at boiling, up to 150%

At this point I hope I am permitted to conclude with a personal remark or two. If the claim is
made that replication is crucial to the development of our field to determine the parameters for
advancement, to prove reality to critics, or to uncover systematic error, then it is astonishing
that attempts to replicate the FPE have been so few, and methodologically so limited. I do
understand the reasons, and am as guilty as any FPE researcher. But it must be completely
understood that this lack of attention to detail and the failure to assimilate what Lonchampt
taught us, is precisely the reason that the question of replicability remains on the table, and is
the motivation for this paper.

One important reason for this lack of focused attention on the question of reproducibility is
that this is not the most important question now, and was not in 1989 although it may become
so in the near future. The question of reproducibility, while undeniably important, is almost
trivial compared with the question of whether or not there is evidence of a new physical effect.
Confining attention to the FPE, the pressing and fundamental question is: is there evidence for
heat production consistent with nuclear but not chemical effects in the deuterium-palladium
system? Clearly the answer is yes. This fact has been established at a level far above working
hypothesis as a “working reality” to a by a large numbers of experimenters in many and diverse
experiments.
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Abstract
Conventionally, the cold fusion reaction produces heat. (1),(2) The authors have
sought a different approach, wherein the device has no input energy, relying on
the energy produced by cold fusion in the device. The device consists of diodes
fabricated as powder, with a large surface junction made up of a semiconductor
in contact with palladium charged with deuterium.

The apparent fusion reactions take place in the junction between the
semiconductor and the Palladium powder, which produces an excitation which
is transmitted to the electrons. This excitation increases their energy and allows
them to cross the bandgap of the semiconductor and pass into the conduction
band, as in a photovoltaic cell. This energy very quickly appears as a
spontaneous potential difference which can reach over 0.5 volt per junction.

The potential drop concentrates on the junction region, and at a nano scale the
electric field reaches considerable values, higher than the megavolt per meter,
which constrains the deuterium nuclei and increases the probability of deuterium
fusion. (3),(4)

Experimental Device
Diodes comprising of a stack of junctions were made, making it possible to obtain over 1 volt

at the poles of a very compact device of a few centimetres long. The power generated by the
device remains very low for the moment, but it should be noted that it is in the form of directly
usable electrical energy, and not thermal energy. The authors compare the density of energy
obtained in their device, with the density of energy released by the first atomic pile produced
by Fermi in Chicago. The levels of energy are very comparable to the fusion diode. The authors
describe the various devices experimented with and used during this work over the last two
years.

As part of this work, an extremely sensitive calorimetry device was built. The authors present
the principle of this device, as well as a project for detecting of neutrons from very weak
sources. This neutron counter records the particles emitted in all the directions of space, and
can be scaled to the size of the neutron source.

Our concept considers that before transforming itself into heat, the energy released by fusions
of the deuterium initially will produce an excitation of the atoms. It is the same thing when a
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photon of visible light hits a solid, initially electrons of the atoms of the solid are excited, and
after this first step, the energy is decayed into heat.

It is possible to take this energy away before its transformation into heat: in a photovoltaic
cell. A solar cell is a diode with a large surface. When photons fall on the junction zone, certain
atoms are excited, and electrons pass from a low energy level to a higher energy level.

The photons are absorbed by the silicon atoms, it is why this material is dark. In a crystal of
silicon, or in a black paint, the energy is converted into heat. In a silicon solar cell, or in a dyed
organic solar cell, part of this energy is transformed into electric current. It appears a voltage
between the poles of the cell.

In our experiment, we tried to replace the light with fusion energy.

Materials and Methods
The following materials are used to make these devices:

Palladium powder (Sigma)
Gas Deuterium (Sigma)
Silicon powder (Sigma)
Other semiconductors (Sigma)

Figure 1. Fusion cell

We built our Fusion Diode by mixing palladium powder and semiconductor powder, in order
to obtain a decreasing silicon gradient, and a increasing palladium gradient throughout the tube.
This forms a zone of contact (junction) between the semiconductor and palladium. This zone of
contact generates a very a large contact surface. Importantly it will be noticed that not only a
voltage appears, but that this voltage is concentrated in a thin zone, the junction zone. If the
junction thickness is 0.5 micrometer, and the voltage 0.5 volt, the field equals one million volts
per meter.
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We propose that in this field of one million volts per meter, the deuterium fusion reaction
occurs.

Our first diodes were made in glass tubes. At the base of these tubes (0.7 cm in diameter) is
welded a platinum wire. Palladium powder is packed around this wire. The powder is then
packed using a glass push rod. Finally a glass fibre stopper is put in place to retain the powder
but allow the gas to flow. A copper connection passes through this stopper. The glass tube is
then placed in a pressure vessel with an electrical connection. See Figure 2.

The terminals of the diode are connected to a datalogger.

This vessel is evacuated, and then filled with deuterium gas.

Figure 2. First generation diode and pressure vessel
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Figure 3. Diode being prepared.

We developed another procedure using a nylon plastic tube with brass end fittings. Each
metal cap contains a strong spring, which compress the powder. The whole device is protected
by another polypropylene tube (Fig. 1).

We used Swagelok ™ valves at each end.

Figure 4. Second generation devices.
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Results
A. Self-sustained voltage

Once the D2 is introduced to our device, voltage quickly rises from zero to 0.5V.

To exclude environmental noise, we first use argon as the cell gas and log the cell for a week,
following the argon the cell is evacuated, then filled with H2, and left for a second week. The
H2 is then removed from the cell, which is evacuated and then filled with D2, and run for a
week. The results are shown in Fig. 5.

Figure 5. Voltage rise with D2 and H2

We conducted a triple-blind test with each diode. The triple-blind results on the chart
followed a three week test period. A week on Argon, during which no voltage was observed, a
week on H2, which showed a level of voltage, and a week of D2 which showed a higher level of
voltage.

The argon experiment demonstrated that factors such an external electrical energy, or some
galvanic action between the powders of the cell are not the reason for the voltage. However
obviously, as a voltage was seen with the H2 some hydrogen oxidation can not be ruled out.

We know that the H2 is impure, and there is always 0.03% deuterium present in the gas
(mainly in the form of HD molecules). In the palladium, HD dissociate, and we think that the
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voltage observed with H2 is the sign of the fusion of the deuterium nuclei. At the end of several
weeks, the deuterium stock would disappear and the voltage should decrease.

We get 0.5 volt with D2. Connected to a resistor of the same range than the internal
resistance of the diode (some hundred of kilo ohms) we have recorded a power in the microwatt
range. After several weeks, the power began to reduce, because there were leaks of deuterium
through the “Swagelok” valves.

Summary measurement of radioactivity
Gamma ray measurements. We tested our device with two types of Geiger counters and
semiconductor radiation meter. We did not detect any significant radioactivity.

Quick look for neutrons. To look for neutrons, we included some Cadmium into the cell
mixture. We placed the cell against a Geiger counter but we did not detect any gamma rays. We
were looking for the reaction: 113Cd + n → 114Cd + gamma ray

Experiments in progress
We are not sure that what we are seeing is Cold Fusion. We have some indications, but we do

not wish to jump to hasty conclusions.

We built a new differential calorimeter, and we hope that this apparatus will be sensitive
enough to correlate measurements of current and electric tension (electrical power) with
measurement of calorific release.

Here is the principle of our differential calorimeter: Two similar Dewar flasks contain
distilled water. Two similar resistance heaters heat the water to 100°C. The water is raised to
boiling in both Dewars. The two resistance heaters are placed in series. The fusion device is
placed in one of the Dewar flasks, a weight of the same mass in the other one.

Both Dewar flasks are placed on electronic weight scales (Fig. 6). We record the difference
of the mass during the experiment. If the atmospheric pressure drops, or if the temperature of
the laboratory varies, or if the electric current of heating varies, the variation will be the same
in the both Dewar flasks. The device is self-correcting.

Of course, the resistances and the two Dewar flasks are never completely identical, which is
why a variable resistance is placed in parallel with one of the flasks. This makes it possible to
zero the system before the diode is introduced into the device. The diode is sealed in a glass
tube.
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Figure 6. Differential calorimeter

Conclusion
For nearly two decades, cold fusion researchers have tried to prove the existence of cold

fusion on the basis of empirically produced excess heat. Many mainstream scientists have
rejected this, claiming that heat alone is inconclusive. The authors have developed a different
approach, in which the device has no input energy, producing energy spontaneously. The
diodes are fabricated as powder diodes, with a large surface area of a semiconductor in contact
with palladium and charged with deuterium.

The apparent fusion reaction takes place in the junction between the semiconductor and the
palladium powder. This produces an excitation which is transmitted to the electrons. This
excitation increases their energy and allows them to cross the bandgap of the semiconductor
and pass into the conduction band, as with a photovoltaic cell. The energy very quickly appears
as a spontaneous potential difference, which can reach over 0.5 volt per junction.

The potential drop concentrated in the junction region (at nano scale) reaches considerable
values, higher than a megavolt per meter. This constrains the deuterium nuclei and increases
the probability of deuterium fusion. Our observations are compatible with the theories which
were presented by the majority of the eminent theorists who have worked on the subject for
years. We can quote some: Resonant Tunnelling, Condensates of Bose-Einstein, Diafluidity,
Erzions, Polyneutrons, Monopoles, etc...(5),(6)
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A diode, comprising of a stack of junctions was made, producing over a volt. While it may be
possible to obtain many volts with a very compact device, of a few centimetres length, we have
never tried this. The released power remains very low for the moment, but it should be noted
that it is directly usable electrical energy, not low temperature thermal energy.

The energy density produced by this devices is comparable to that of the first atomic pile at
the University of Chicago in 1942 (Chicago-Pile 1): the Fusion Diode has 1 g of palladium, and
had an electrical power in the range of the microwatt, giving a mass/power ratio of 10-6 W/g.
Chicago-Pile 1 weighed 864,000 pounds (nearly 431 tons) and produced 100 W of thermal
energy. This was probably peak power, because the reactor was not shielded, and most of the
scientists of the Fermi team managed to live to a ripe old age. The Chicago-Pile 1 had a power
to weight ratio of 0.25 × 10-6 W/g.

It is important to note that palladium is not the only effective material to obtain fusion
reactions. There are other possibilities we have yet to explore. We expect to find in the future
other materials which may be even more favourable to the establishment of fusion reactions.
We think that we are at the dawn of a new era, such as when Kamerlingh Onnes discovered
superconductivity. At that time, the only super conductor was mercury, which loses resistivity
at 4 K. With mercury it would be impossible to build the magnets of ITER and of the LHC.
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Abstract
D. Cravens and D. Letts [1] have analyzed a portion (167 papers) of the
published literature reporting on D2O electrolysis experiments such as
Fleischmann and Pons’s (FP). They identify four criteria for what constitutes a
“proper” FP experiment and state that experiments that satisfy all four criteria
are likely to succeed in producing excess heat, while those that do not are likely
to fail. This paper presents results of using a Bayesian network for probabilistic
analysis of this claim. Consideration of a small subset of the papers (eight) is
sufficient to give a likelihood ratio of about 10 to 1 in favor, and this number
appears to grow generally rapidly, though not monotonically, as more papers are
added to the set.

1. Introduction
Some of us, when asked why we tend to accept the reality of the Fleischmann-Pons effect,

reply with the statement:

“It’s not any one experiment; it’s the number and variety of confirmations by
independent researchers around the world.”

More generally, independent replication is considered an important step in acceptance of new
experimental results. This paper reports an attempt to model the situation using a Bayesian
network: a proposition (“The effect is real”) with a number of pertinent reports, each open to
doubt, but collectively sufficient to convert initial doubt (a low prior probability) into
acceptance (a high posterior probability, conditional on the evidence).

1.1. Cravens-Letts database
D. Cravens and D. Letts [1] report a study of 167 selected papers concerning heat generation

in electrochemical systems of the “classical” Fleischmann-Pons type: electrolytic cells with Pd
cathodes in D2O-based electrolyte. The list spans the years 1989–2007 and is non-exhaustive
mainly because papers were included only if available in digital form. The authors rated the
papers, when possible, according to four yes/no “enabling criteria,” related to (1) cathode
loading, (2) good chemical procedures, (3) operating current densities, and (4) non-equilibrium
operation. (See the paper [1] for detailed statements of how the criteria were assigned.) In
addition they assigned a yes/no value according to whether excess power was reported or not.

1 The views expressed herein are those of the authors and not necessarily those of the U.S.
Government, Department of Defense, Department of the Navy, or the Naval Postgraduate
School.
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They succeeded in rating 122 of the 167 papers and, after statistical analysis, concluded that
production of excess power was highly correlated with the number of criteria satisfied—very
likely if all four were met and less likely if fewer were met. We here report on a probabilistic
test of that claim by use of a Bayesian network.

1.2. What is the problem?
We are interested in questions such as:

“Given that in paper #1, where all 4 criteria were met, heat was observed, and in
paper #2, where only 2 criteria were met, no heat was observed, and . . . in paper
#167, . . . heat was observed, then what can we say about the probability that the
FP effect is “real”? And what is the probability that a new experiment satisfying
all 4 criteria will produce excess heat?”

In condensed-matter nuclear science in general we face multiple observations and
experimental results, and multiple conjectures and hypotheses that might explain them.

To illustrate, consider the propositions:

A: Nuclear reactions occur at low temperature in solids.

B: Excess heat is observed.

C: Helium production is observed.

D: Emission of energetic particles is observed.

Then B, C, and D are observations that can serve as evidence in support for A, considered as
a hypothesis. Likewise, consider propositions:

E: Known nuclear reactions & quantum many-body effects.

F: “New physics”.1

G: Error / deception.

H: Excess heat is reported.

Then E, F, and G are alternative hypotheses that might explain observation H. The relations
between the propositions are shown schematically in Figs. 1 and 2. These are simple examples
of Bayesian networks, which are discussed in Section 2.2 below.

1 . . . whatever we might choose to mean by the phrase. The propositions listed here are
informal, abbreviated, and intended primarily as illustration.
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Figure 1. Multiple support for a hypothesis Figure 2. Alternative explanations

2. Bayesian methods
In general there may be more complicated interrelations (as in Fig. 3 further down). We need

help in thinking quantitatively about such problems, and probability theory provides tools for
doing so. Bayes’s rule (or Bayes’s theorem) is a fundamental rule of probability, used in
updating the probability of a proposition in the light of new information. There are various
methods based on it (called “Bayesian”), including Bayesian networks, which allow
representing complex relations between propositions and making inferences concerning their
probabilities.

2.1. Rules for probability
The degree of credence we accord to a proposition is (or should be) subject to change when

we learn new relevant information. In quantitative terms, if A is a proposition to which we have
initially assigned a probability P(A), and we then obtain new information in the form of a
proposition B, we update the probability of A to a quantity P(A | B), the conditional probability
of A, given B. One also uses the terms prior and posterior probabilities for P(A) and P(A | B),
respectively. The process could continue, of course. Obtaining further new information, say C,
leads to P(A | BC), and so on. In this section we collect some basic rules, prominent among
them Bayes’s theorem, for dealing with conditional probabilities. We recommend the textbook
by Jaynes [2] for (along with much else) a thorough discussion of what we here touch on
lightly.

2.1.1. Bayes example problem
It is common in textbooks to introduce Bayes’s theorem with an example: medical screening.

Say you are a doctor screening for an uncommon but serious disease, where “uncommon”
means

1% of people in the general population have the disease.

Also suppose there is a quite reliable test for the disease:

98% of people with the disease will test positive;
95% of those without the disease will test negative.

You give one of your patients the test as part of a routine physical, and the results come back
positive. Do you tell the patient: “There is a 98% chance that you have a serious disease”?
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We will see that the probability is actually closer to 16.526%, or about one chance in six, not
98%. Your patient is probably healthy. (Expensive or risky treatment is unjustified. But more
testing is mandatory; ignoring a 1 in 6 chance amounts to Russian roulette.)

We express the given information symbolically:1

D: disease T: test positive
D′: no disease T′: test negative

P(D) = 0.01: probability of having the disease in the absence of test results
P(D | T): the conditional probability of having the disease, given positive test results.

We want P(D | T). We have P(D) and two other conditional probabilities:

P(T | D) = 0.98: probability of a positive test, given that the disease is present;
P(T′ | D′) = 0.95: probability of a negative test, given that the disease is absent.

2.1.2 Rules
Product rule: probability that A and B are both true

P(AB) = P(A) P(B | A) = P(B) P(A | B)

Bayes’s rule:

P(A | B) = P(B | A) P(A) / P(B)

Sum rule:

P(B) = P(B | A) P(A) + P(B | A′) P(A′) + P(B | A′′) P(A′′) + …

where A, A′, A′′, … are an exhaustive set of mutually exclusive propositions—
that is, one must be true, but no two can be true at once.

Bayes’s theorem follows directly from the product rule: divide by P(B). The sum rule is
useful for evaluating the denominator P(B) on the right-hand side of Bayes’s rule. Some
variants of these rules can be useful; we may use

P(A | B) = P(AB) / P(B) (1)

in place of Bayes’s rule as just given, and we may use the sum rule in the form

P(B) = P(AB) + P(A′B) + P(A′′B) + … (2)
2.1.3 Solution of example problem

Applying Bayes’s rule to the previously given probabilities gives

1 In general (as in the “sum rule” of Section 2.1.2) we use a notation such as A, A′, A′′, … to
denote a set of propositions exactly one of which is true. Here we assume that D and D′ are
such a set (one either has the disease or one doesn’t) and likewise for T and T′ (only two test
results are possible: positive and negative). In this special case of just two alternatives, one can
read the prime symbol as logical negation: not-D for D′ and not-T for T′.
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P(D | T) = P(T | D) P(D) / P(T)
= 0.98  0.01 / P(T)

and the sum rule gives

P(T) = P(T | D) P(D) + P(T | D′) P(D′)
= 0.98  0.01 + 0.05  0.99
= 0.0098 + 0.0495 = 0.0593

where we have used the fact that P(T | D′) = 1 − P(T′ | D′) = 1 − 0.95 = 0.05. Finally, 

P(D | T) = 0.98  0.01 / 0.0593 = 0.16526

which is the stated result of 16.526%, or about one chance in six.

2.2. Bayesian networks
A Bayesian network is a graphical representation of complex relations between propositions;

it allows inferences concerning their probabilities. Figure 3 shows an example slightly more
general than the ones shown in Figs. 1 and 2.

Figure 3. Bayesian network. Figure 4. Loop (not allowed) Figure 5. Medical
screening example

A Bayesian network consists of nodes connected by arrows. Loops, as in Fig. 4, can lead to
contradictions and are not allowed. (This means that the network is a directed acyclic graph.)
With each node is associated a “random variable” (such as A, B, C, … in Fig. 3). By calling a
variable such as A “random” we mean simply that:

(1) There is a set of possible values {a1, a2, … , an}, so that the propositions A = a1, A = a2,
…, A = an form an exhaustive set of mutually exclusive propositions; and

(2) We can talk about probabilities (perhaps conditional) of these propositions, e.g. P(A =
ai), P(B = bj | A = ai).
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True-false proposition, such as D and T of the medical screening example, are included (see
Fig. 5); the set of values is just {true, false}.

Arrows indicate conditional dependence. If there is an arrow from a node X to a node Y, we
call X a parent of Y. Thus the parents of C in Fig. 3 are A and B. A variable has a probability
distribution conditional on its parents. In the case of A, B, and C, this means that conditional
probabilities P(C = c | A = a, B = b) are given for all values a, b, and c in the value sets of A, B,
and C, respectively. This generalizes in a straightforward way to any number of parents. For a
node without parents, such as A, we require the unconditional probabilities P(A = a) for each a.

Bayesian networks can be used for updating our probabilities for values of some variables
when we obtain new information in the form of values for other variables. This generalizes
what we did in the medical screening example. There, we learned the value T = true for the test
result, making it no longer uncertain (or “random”). Consequently we were able to update our
probability for D, disease, from the prior value P(D) to the posterior value P(D | T = true).
Analogously, we could suppose we learn values for some of the variables, say C and E, in the
more elaborate network of Fig. 3, and we could ask how the new information affects the
probabilities for the values of some other variable or variables, such as B.

To begin, in terms of the conditional and unconditional probabilities associated with the
nodes, we can write an expression for the joint probability distribution for the entire set of
variables; for the illustrative network of Fig. 3, this is the set of probabilities P(A = a, B = b,
C = c, D = d, E = e) that A = a and B = b and C = c and D = d and E = e, where a, b, c, d, and e
range over their respective value sets. We show this in a shorthand notation, writing A for
A = a, B for B = b, etc., so that the desired set of probabilities is denoted by P(ABCDE); they
are then given by:

P(ABCDE) = P(A) P(B | D) P(C | AB) P(D) P(E | B) (3)

In general there is one factor for each node, consisting of the associated probability
expression (conditional or unconditional). From this we can calculate other conditional
probabilities such as P(B | CE), for example: the updated probabilities for B, given that we have
learned values for C and E.

By equation (1), the alternative form of Bayes’s rule from §2.1.2, we can write:

P(B | CE) = P(BCE) / P(CE) (4)

We can get the numerator, P(BCE), by using essentially the alternative form of the sum rule,
equation (2) from §2.1.2: sum (3) over the variables that do not occur in P(BCE):

P(BCE) =  a,d P(A = a, B, C, D = d, E)

Likewise we get the denominator by summing over B as well:

P(CE) =  a,b,d P(A = a, B = b, C, D = d, E) =  b P(B = b, C, E)

And the last two equations allow us to compute the desired quotient in (4).
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For more information about Bayesian networks, see the textbook by Jensen [3], for example.
There are also useful on-line tutorials by Breese and Koller [4] and by Murphy [5].

Software support is necessary for work with networks of any substantial size. For the work
reported here we took advantage of a Java applet written by Yap, Santos, et al. [6] at the
University of British Columbia and made available for download.

Figure 6. Bayesian network applet

This allows one to draw a network by means of a graphical interface, enter conditional
probabilities in tabular form, set observed values for selected nodes, and display the resulting
probabilities for other nodes. Figure 6 shows the display for a network similar to the one in Fig.
3.

2.3. Weight of evidence
For inference about a yes/no proposition, a formulation of Bayes’s theorem in terms of odds

and likelihoods ratios can be useful. First, a bit of terminology: The quantities P(B | A),
P(B | A′), P(B | A′′), … that occur in the sum rule (§2.1.2) are called the likelihoods of A, A′, A′′,
… .1 For a pair of alternatives, A and A′, the quotient P(B | A) / P(B | A′) is called the likelihood
ratio. When these are the only alternatives, we have P(A) / P(A′) = P(A) / (1 − P(A)); this
quantity is the (prior) odds for A and denoted by O(A). Similarly, the posterior odds for A are
O(A | B) = P(A | B) / P(A′ | B).

Now write Bayes’s rule for A and for A′:

1 Recall that A, A′, A′′, . . . form an exhaustive set of mutually exclusive propositions.
“Likelihood” is used in a technical sense. The terminology is unfortunate because it may give
the impression that the likelihoods are conditional probabilities of A, A′, A′′, . . . , which they
are not; in particular they need not sum to 1.
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P(A | B) = P(A) P(B | A) / P(B)
P(A′ | B) = P(A′) P(B | A′) / P(B)

and divide the first equation by the second. The factors of P(B) cancel, and we get:

P(A | B) / P(A′ | B) = [P(A) / P(A′)] [P(B | A) / P(B | A′)]

The left-hand side is the posterior odds for A, the first factor on the right is the prior odds,
and the second factor is the likelihood ratio. Thus:

O(A | B) = O(A) [P(B | A) / P(B | A′)]

which we can state as:

“posterior odds = prior odds × likelihood ratio”

If the “evidence” B consists of several observations B1, B2, … that are independent in the
sense that P(B1B2, … | A) = P(B1 | A) P(B2 | A) … and P(B1B2, … | A′) = P(B1 | A′) P(B2 | A′) …,
then the equation generalizes to

O(A | B1B2, … ) = O(A) [P(B1 | A) / P(B1 | A′)] [P(B2 | A) / P(B2 | A′)] …

Taking logs of all the factors gives an additive version. Thus taking a new piece of
independent evidence Bi into account just increments the log of our odds for A by

log [P(Bi | A) / P(Bi | A′)]

which is called the weight of evidence for A provided by Bi. (See Good [7] and Jaynes
[2, pp. 91 ff.].)

If one starts with noncommittal prior odds of 1:1, evenly balanced between acceptance and
rejection of a proposition, then the likelihood ratio of the evidence gives ones posterior odds.
On the other hand, one can view the reciprocal of the likelihood ratio as a “critical prior”: the
prior odds such that the evidence would bring us to posterior odds of 1:1. In this latter role, the
likelihood ratio can help us in assigning a numerical value to our prior odds for a preposition;
imagine a successions of independent repetitions B1, B2, … of an experiment with a given
likelihood ratio and ask how many successful outcomes would bring us to a state of
uncertainty, poised between acceptance and rejection. (See Good [7] and Jaynes [2, Ch. 5].)

Our task will be to evaluate the likelihood ratio (equivalently, the weight of evidence) for the
proposition that “the FP effect is real” provided by Cravens and Letts’s ratings of a subset of
the papers in their database.

2.4. Estimating probabilities
In the medical example we were given the values P(T | D) = 0.98, P(T′ | D′) = 0.95,

P(D) = 0.01. In practice such numbers are commonly gotten from a study, e.g. give the test to
some people known to have the disease, and observe that about 98% test positive. The numbers
are known only with some uncertainty, e.g. “The fraction of people with the disease who test
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positive is in the range 0.980 ± 0.002 with probability 68%. This seems to be saying that P(T |
D) is in a certain range with a certain probability. What do we mean by the probability of a
statement about other probabilities?1

Our treatment of Cravens and Letts’s evidence will involve probabilities that are not known
in advance but are estimated from the data. To illustrate the considerations involved, we present
a simple problem.

The “biased coin” problem concerns a coin for which the probability p of heads is some
arbitrary number between 0 and 1, not known to us and not necessarily 0.5. It is not at all clear
how one could construct such an object in practice,2 so it may be better to think of a game
spinner with two sectors, marked H and T, with H containing a fraction p of the full circle (Fig.
7).

Figure 7. “Biased coin” spinner

If we spin so that the probable location of the pointer is uniformly distributed over the circle,
the probability of its showing heads is p. Now write Hp for the proposition that the size of the H
sector is p, and suppose that this unknown size was chosen at random (uniformly) between 0
and 1 (Fig. 8). We are now dealing with continuous probability distributions; P(Hp) is a

probability density, not a discrete value, and satisfies   1 dpHP p rather than p P(Hp) = 1.

Suppose we spin once and observe a head. What is our revised probability for Hp, given E11:
one head in one trial? Bayes’s rule for continuous probability distributions gives:

P(Hp | E11) = P(E11 | Hp) P(Hp) / P(E11)
= p / P(E11)

1 The need to take systematic account of uncertainties in our information is ubiquitous and has
a long history. It played a central role in Laplace’s comparison of imperfect astronomical
observations with Newtonian gravitational theory; see Jaynes [8; 2, Ch. 5].
2 We might try loading a coin by making it of two layers with lead on one side and aluminum
on the other. This turns out not to be effective; see Jaynes [2, §10.3], “How to cheat at coin and
die tossing.” Jaynes shows in fact that the probability of heads is not just an intrinsic physical
property of the coin and may have little to do with quantities such as the displacement of the
center of gravity of the coin from its geometrical center.
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Figure 8. Uniform prior P(Hp)

Here P(E11 | Hp) is p, because that’s what Hp says: the probability of getting a head is p. And
P(Hp) is 1 by assumption.

The continuous version of the sum rule (§2.1.2) gives
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0
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dpp
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  pEHP p 2| 11  (5)

as in Fig. 9.

Figure 9. One head in one trial observed

Now the probability of heads on the next trial is:

P(“one more head” | E11) = 
1

0

P (“one more head” | E11Hp) P(Hp | E11) dp

The first factor in the integrand is p by definition of Hp, and equation (5) gives the second. So

P(“one more head” | E11) =  
1

0

2 3/22 dpp

We can continue making trials and updating our probability distribution for Hp. Possible
results are shown in Figs. 10–12.



714

With the notation Emn = “m heads observed in n trials,” these represent:

P(Hp | E22) = 3p2 P(Hp | E12) = 6p(1−p) P(Hp | E24) = 30 p2(1−p)2

Figure 10. 2 heads in 2 trials Figure 11. 1 heads in 2 trials Figure 12. 2 heads in 4 trials

The general formula for m heads out of n trials is:

P(Hp | Emn) = [(n+1)!  m!(n−m)!] pm(1−p)n−m

and the formula for the probability of heads on the next trial is:

P(“one more head” | Emn) = (m+1) / (n+2).

This is Laplace’s rule of succession: assuming a uniform prior for Hp and m “successes” out
of n independent trials, the probability μ of success on the next trial is given by

μ = (m+1) / (n+2)

The successive posterior distributions peak up more and more sharply as the number of trials
increases (Fig. 13). The width of the peak is 2σ, where the standard deviation σ is given by

   3/1  n

and the mean μ is as just given. For a derivation of σ, see equation (6.35) in Jaynes [2, ch. 6].

The assumption of a uniform prior may or may not be justified, depending on available
information. But if the prior is continuous and non-zero near μ, the shape of the posterior will
often be found to resemble Fig. 13.
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Figure 13. Peak shape

3. Problem setup
The network we developed is shown in Fig. 14. Node R is the proposition of interest—

roughly speaking, “is the FP effect ‘real’?” The nodes E2, E8, … , E28 refer to the results
published in the set of papers selected for initial consideration; the subscripts are index
numbers of the papers in the Cravens–Letts [1] database. The other “E” nodes are auxiliary
nodes associated with the papers, and the “P” nodes are various probabilities to be estimated
from the data by means illustrated in §2.4.

Figure 14. Network for eight selected papers (initial configuration)



716

3.1. Selected papers
Cravens and Letts [9] suggested the following eight papers for initial consideration:

# Cri Heat Citation
2 2 No R. D. Armstrong et al., Electrochimica Acta 34 (9) 1319–1322 (Sep. 1989).
8 4 Yes R. C. Kainthla et al., Electrochimica Acta 34 (9) 1315–1318 (Sep. 1989).
10 3 No N. S. Lewis et al., Nature 340 (6234) 525–530 (Aug. 17, 1989).
15 1 No D. E. Williams et al., Nature 342 (6248) 375–384 (Nov. 23, 1989).
17 4 Yes A. J. Appleby et al., Proc. First Ann. Conf. Cold Fusion, 32–43 (Mar. 1990).
18 4 Yes Y. Arata & Y.-C. Zhang Proc. Japan Acad. B 66 (1) 1–6 (1990).
26 4 Yes S. Guruswamy & M. E. Wadsworth, Proc. First Ann. Conf. Cold Fusion, 314–

327, (Mar. 1990).
28 4 Yes T. Lautzenheiser & D. Phelps, Amoco Production Company Research Report

T-90-E-02, 90081ART0082 (Mar. 1990).

The numbers under “#” are the index numbers of the papers in Cravens and Letts’s database.
The numbers under “Cri” give the number of enabling criteria satisfied by the paper. A Yes or
No under “Heat” indicates whether excess heat was reported.

3.2 Network propositions
Proposition R can also be phrased as “the experimental treatment makes a difference”. We

consider two alternatives:

 R = false:1 the probability of observing excess heat is the same (Pf) regardless of
whether all, some, or none of Cravens and Letts’s enabling criteria are satisfied. This
would imply that reported observations of excess heat are the result of error,
deception, or extraneous factors.

 R = true: the probability of observing excess heat has one of several values (P0, … ,
P4), depending on the number of enabling criteria that are satisfied.

Ei states that excess heat was reported in paper number i of the data base.

Eif states that excess heat was reported in paper number i in case R = false. Its truth value is
irrelevant in case R = true. Its conditional probability is simply the value of Pf.

Ein states that excess heat was reported in paper number i in case R = true, where n is the
number of enabling criteria met by the paper. Its truth value is irrelevant in case R = false. Its
conditional probability is simply the value of Pn.

Nodes Eif and Ein exist to simplify the expression of the conditional probabilities of Ei, rather
than for any intrinsic interest of their own. Ei is true if either (1) R and Ein are both true or (2) R
is false and Eif is true; Ei is false otherwise. The Eif and Ein nodes could be eliminated and Ei

made directly dependent on R, Pf, and Pn at the expense of expanding Table 2 below to a table
with 50 rows.

1 A statistician of the orthodox persuasion might call this alternative a “null hypothesis.”
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3.3 Network variables
Pf is the probability of excess heat being reported in case R = false.

Pn is the probability of excess heat being reported in an experiment satisfying n of the
enabling criteria (n = 0, … ,4) in case R = true.

Pf and P0, … , P4 are probabilities to be estimated from the data by means illustrated in §2.4.
Ideally they would each be described by a continuous probability density on the interval from 0
to 1. Because of practical limitations of the software, we used fairly coarse discrete
approximations.

3.4. Probability tables
The prior and conditional probabilities for the nodes of the network are specified in tabular

form.

We set the prior probability of R equal to 0.5, as shown in Table 1, giving prior odds of 1.
Consequently the posterior odds are equal to the likelihood ratio. (See §2.3.) This makes it easy
to determine the weight of evidence from the program outputs.

Table 1. P(R)

R
true false
0.5 0.5

The conditional probability of Ei is specified as in Table 2. This simply makes Ei agree with
Eif when R is false and with Ein when R is true. The actual probability values are those of Eif in
the first case and Ein in the second.

Table 2. P(Ei | R Eif Ein)

Ei

R Eif Ein true false
true true true 1 0
true true false 0 1
true false true 1 0
true false false 0 1
false true true 1 0
false true false 1 0
false false true 0 1
false false false 0 1

The conditional probabilities of Eif and Ein are given in Tables 3 and 4. The probability of Eif,
given Pf, is by definition simply the value of Pf ; and the probability of Ein, given Pn, is the
value of Pn.
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Table 3. P(Eif | Pf) Table 4. P(Ein | Pn)

Eif Ein

Pf true false Pn true false
0.1 0.1 0.9 0.1 0.1 0.9
0.3 0.3 0.7 0.3 0.3 0.7
0.5 0.5 0.5 0.5 0.5 0.5
0.7 0.7 0.3 0.7 0.7 0.3
0.9 0.9 0.1 0.9 0.9 0.1

The prior probabilities of Pf and Pn (n = 0, … ,4) are shown in Tables 5 and 6. They are all
the same: a coarse discrete approximation to a uniform distribution on the unit interval.

Table 5. P(Pf) Table 6. P(Pn)

Pf Pn

0.1 0.3 0.5 0.7 0.9 0.1 0.3 0.5 0.7 0.9
0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2

4. Results
After entering the probability tables in the nodes of the network of Fig. 14, we successively

declared “observed” values for the nodes Ei, starting with false for E2 and finishing with true
for E28. The final state of the network is shown in Fig. 15, in which display of the probability
distributions of the nodes Pf, P0, … , P4, has been enabled.

Figure 15. Final configuration of network for eight selected papers

The posterior probabilities for R = true and R = false are 0.9093 and 0.0907, giving posterior
odds of 10.025. This is also the final value of the likelihood ratio, since we started with prior
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odds of 1.0. The value of the likelihood ratio is plotted in Fig. 16 as a function of the number of
papers taken into account, from 1 paper (#2 only), 2 papers (#2 and #8), through 8 papers.

The likelihood ratio for R, give 1 paper, is 1.0, exactly equal to the prior value of 1.0 with no
papers at all (not plotted). With one paper, the distributions of Pf and P2 were identical—a bit
biased toward the low values, as the first paper (#2) reported no heat. There was not yet a basis
for choosing between the two. Adding a second paper (#8, reporting heat) increased the ratio to
about 1.47, and adding a third (#10, reporting no heat) made no difference. The next four,
consistently showing heat with four criteria satisfied, brought a steep increase in the likelihood
ratio to 10.025.

At that point the posterior distribution for P4 was strongly biased toward high values, as
shown in Fig. 15, and as one would expect. P1, P2, and P3 showed weaker and identical biases
toward low values, since in each case (1, 2, or 3 criteria met) one instance was observed,
reporting no heat. P0 was flat, unchanged from its prior, as no evidence was included bearing
on the case of 0 criteria met. The distribution of Pf was relatively flat, close to its prior, as the
probability for R = false was at that point estimated as being rather small. Note that if R were
definitely known to be true, the value of Pf would be irrelevant, and we would expect it to be
no different from its prior. As an experiment, we changed the prior value for R = false to 0.99,
sufficiently skeptical that the posterior value came to about 0.91; in that case, the posterior
distribution for Pf showed an apparent peak between 0.5 and 0.6, about where the rule of
succession would predict for 5 successes (heat observed) out of 8 trials.

Figure 16. Change in likelihood ratio as more and more papers are taken into account

Eight papers is a small enough sample that no particular significance should be attached to
the particular final numerical value of 10.025 for the likelihood ratio for R, though the
qualitative behavior of Fig. 16 is suggestive. Moreover, the set of eight is not a representative
sample of the data base; some were selected for historical significance. In particular, papers #10
and #15 are accounted by Cravens and Letts [1] as “the most important papers in the field of
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Condensed Matter Nuclear Science” for their early and lasting negative impact. On the other
hand the announcement by Fleischmann and Pons (#1 in the database) was omitted.

In addition, the model presented here does not address the important question of publication
bias. We have looked at toy models for experimenter bias, but incorporating such factors in the
present model is a matter for future work. The problem is less severe for the period
immediately following the Fleischmann–Pons announcement, when a number of researchers
were quite willing to report negative results. However, the more recent papers in the Cravens–
Letts database are preponderantly positive, and incorporating them all in the computation
would risk producing inflated values for the likelihood ratio for R unless the tendency not to
report failures were taken into account.

It was nevertheless felt desirable to include a larger number of papers. Attempts to increase
the number of papers from 8 to 12, while successful (Johnson and Melich [10]), made it clear
that we were approaching the computational limits of the Java applet. Moreover the scheme we
have described lumps together all papers that meet the same number of criteria; those meeting
the first two enabling criteria are counted together with those meeting the last two. It was
thought to be also desirable to consider particular subsets of the four criteria, rather than simply
the count, expanding the number of cases from 5 to 16.

We have subsequently obtained an exact analytical expression for the likelihood ratio. This
not only circumvents the computational limits, but it uses exact uniform priors for the P’s (Pf,
P0, P1, P2, P3, P4) rather than the coarse discrete approximations of Tables 5 and 6. And it
generalizes easily from 5 classes of papers (0, 1, … , 4 criteria satisfied) to 16 classes (all
distinct subsets of the 4 criteria). Here is a sketch of the results.

To begin, remove the intermediate nodes Eif, Eik in Fig. 14 so that, e.g., E2 depends directly
on Pf and P2. The joint probability for the network becomes:

P(R) P(Pf) P(P1) … P(P4) P(E2 | R Pf P2) P(E8 | R Pf P4) … P(E28 | R Pf P4)

and dividing by P(R) gives the probability conditional on R:

P( ∙ ∙ ∙ | R) = P(Pf) P(P1) … P(P4) P(E2 | R Pf P2) P(E8 | R Pf P4) … P(E28 | R Pf P4)

where ∙ ∙ ∙ stands for all the variables other than R. The priors for the P’s are uniform, i.e. 1.
The conditional probabilities are given by, e.g.

Table 7. P(E2 | R Pf P2)

E2

R True false
true P2 1 – P2

false Pf 1 – Pf

for P(E2 | R Pf P2). Thus the joint probability is

P( ∙ ∙ ∙ | R = false) = (1 – Pf) Pf (1 – Pf) (1 – Pf) Pf Pf Pf Pf

P( ∙ ∙ ∙ | R = true) = (1 – P2) P4 (1 – P3) (1 – P1) P4 P4 P4 P4
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for the case E2 = false, E8 = true, E10 = false, E11 = false, E17 = true, E18 = true, E26 = true,
E28 = true. (For the subscripts in the second expression, recall that the values of k, number of
criteria satisfied, are 2, 4, 3, 1, 4, 4, 4, 4 for the respective papers numbered 2, 8, …, 28.)

For a general collection of papers, not necessarily those of Fig. 14, the expressions are
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where N is the total number of papers, M is the number reporting excess heat, nk is the number
of papers in class k (i.e. k enabling criteria satisfied) and mk is the number of those reporting
excess heat. Integrating out the P’s gives the probability of the observed quantities (criteria
satisfied, heat reported) conditional on R:
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and the likelihood ratio is the second of these quantities divided by the first.

For the 8 selected papers,

n0 = 0, n1 = 1, n2 = 1, n3 = 1, n4 = 5 N = 8
m0 = 0, m1 = 0, m3 = 0, m4 = 0, m5 = 5 M = 5
P(observed | R = false) = 1/504
P(observed | R = true) = (1/1)(1/2)(1/2)(1/2)(1/6) = 1/48

The likelihood ratio is therefore 504/48, or 10.5 (exactly). This is to be compared with the
value of 10.025 obtained numerically with the applet, using a 5-point discrete approximation to
a uniform prior for the P’s. It appears that the use of such a discrete approximation has not
resulted in serious error in the computed likelihood ratio.

There is no problem in generalizing from 5 classes of papers (0, 1, … , 4 criteria satisfied) to
16 classes (all distinct subsets of the 4 criteria): just let k above index the 16 classes and adjust
the limits of k in the products accordingly.
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Abstract
A recent claim demonstrating a nuclear process triggered by electrolysis is
challenged. An analysis, based on relative diameters, is used to demonstrate that
predominant pits could not possibly be attributed to alpha particles, or to less
massive nuclear projectiles. This conclusion is supported not only by positive
results from a replication experiment, but also by results from the experiment on
which the original claim was based. While the numerous SPAWAR-type pits
seem to be highly reproducible, their interpretation is not yet clear. The
SPAWAR discovery can be called scientific (rather than protoscientific) because
it is reproducible.

Introduction
The first version of this paper was devoted to my participation in The Galileo Project. More

specifically I wanted to explain why, in my opinion, alpha particles, or less massive nuclear
projectiles, could not be responsible for copious pits discovered by the SPAWAR team. I
wanted to justify this conclusion not only on the basis of my own experimental data but also on
the basis of SPAWAR results published in (1). It occurred to me, after writing the first version,
that my manuscript could be published in a mainstream journal.

Not counting on success, I decided to submit the paper as soon as possible. Surprisingly, my
paper (2) was accepted; it will probably be published in September or November of 2008. This
presentation briefly summarizes my investigations of SPAWAR results and addresses some
topics of general interest.

Investigations of SPAWAR results
In 2007 I was one of several researchers who used SPAWAR protocol, distributed by Steve

Krivit, and reported the results (3) at the APS Winter Meeting (Denver, 2007). These results,
and results reported by other researchers, demonstrated that dominant pits discovered by
SPAWAR researchers are reproducible. No one disputed this fact. As far as I know, everyone
who used the protocol observed copious pits on the face of the CR-39 detector that was in
contact with the silver cathode during electrolysis.

But disagreements emerged about how to explain these pits. Are they due to nuclear
projectiles created during electrolysis or are they due to something else? If copious pits are due
to nuclear projectiles then what kind of projectiles are emitted? Can they be alpha particles and
protons, as suggested by SPAWAR researchers (4)?
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Taking the nuclear origin of copious pits for granted, I convinced myself that SPAWAR-type
pits could not possibly be due to alpha particles, or to less massive projectiles, such as protons.
That conclusion, based on my own experimental data, was reported in (3). In the paper to be
published (2) I show that SPAWAR’s experimental data, reported in (1), lead to the same
conclusion. Additional observations can be seen in (9).

The paper (2) also refers to experimental results reported by several CMNS researchers. In an
experiment conducted by Tanzella et al. (5), the CR-39 detector was surrounded by a six-
micron mylar film. This was done to eliminate direct contact between the CR-39 detector and
the cathode (or the electrolyte). The film was sufficiently thin to allow alpha particles (with
energies higher than 1.5 MeV) to be transmitted. No copious pits were observed in this
experiment. I consider this to be a direct proof that SPAWAR-type pits are not due to alpha
particles with energies higher than about 1.5 MeV.

The most interesting result of (5), however, was the presence of another kind of pits, on both
sides of the CR-39 detector surrounded by the thin mylar film. These pits were not as abundant
as SPAWAR-type pits (only about 100 per square centimeter versus millions per square
centimeter) and they were considerably smaller than copious pits in SPAWAR-type
experiments. A subsequent investigation (by Lipson et al.) showed that sizes of pits, on the
mylar-protected CR-39 chip, are about the same as sizes of pits due to protons with energies
between 2 MeV and 3 MeV. In my opinion, proton-like pits offer a more convincing evidence
of a nuclear process due to electrolysis than much more abundant SPAWAR-type pits, near the
cathode.

General observations and suggestions
1) Problem of reproducibility: science versus protoscience

Use of scientific methodology of validation, in a given field, is not sufficient to make a field
scientific. At least some demonstrations of new phenomena must be reproducible on demand.
Without this a field should be characterized as protoscientific. The expected evolution of a
protoscience into science is schematically represented in Flowchart 1, below.

2) Struggle for recognition
A field in which scientific methodology of validation is used, and in which some new

phenomena are reproducible on demand, is scientific. The expected evolution of a new
scientific field, toward general acceptance, is schematically represented in Flowchart 2.
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Flowchart 1

Flowchart 2
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The evolution of protoscience into science (Flowchart 1) can be very slow because
experiments are not reproducible and because researchers are not guided by a reliable theory.
Theories based on ad hoc assumptions are not reliable. Success depends on sheer luck in
accidentally identifying necessary preconditions for reproducibility, and on available resources.

But the path from reproducibility of a new effect to general acceptance (the second flowchart
above) is likely to be much faster. Starting with a reproducible experiment one can quickly
learn how different parameters influence the effect. Some parameters will have only negligible
effect on the outcome while others will have dramatic influence. Success will no longer depend
on chance; it will become a matter of skill in systematic investigations.

3) Coordinated research versus working in isolation

It is unfortunate that, except for The Galileo Project, initiated by Steve Krivit (7), CMNS
researchers work in isolation from each other. This is understandable; each researcher does
what matches his/her expertise and limited resources. This kind of work has been going on for
19 years. It produced remarkable protoscience, in the subfields listed below:

-----------------------------------------------------------------------------------------------------

1) Excess heat, sometimes orders of magnitude larger than what can be attributed to known
chemical reactions.

2) Excess heat correlated with production of 4He (generated at a rate close to 23 MeV per
atom of produced helium).

3) Chemically-induced changes in isotopic composition of elements. Note that the term
“chemically” is very broad; it covers all atomic and molecular processes, including diffusion of
gasses through solids.

4) Production of new elements, either stable or radioactive, in amounts high above what can
be attributed to omnipresent impurities.

5) Chemically-induced changes in the rate of radioactive decay.

6) Production of high energy photons, for example, gamma rays, during chemical processes.

7) Emission of energetic nuclear particles

-----------------------------------------------------------------------------------------------------

But the task of turning protoscience into accepted science is still waiting for us. How to
approach this difficult task and how to proceed more effectively? In my opinion, well-focused
cooperative investigations, as in The Galileo Project, are likely to be more productive, in the
next two or three years, than uncoordinated efforts of many individuals. Who should select the
one or two most promising effects on which to focus? Who should coordinate these
investigations? And who should cover the costs (probably not more than three to five million
dollars)?

I think that the task of selecting one or two effects, on which to focus, belongs to us; our
CMNS discussion list, run so well by Haiko, seems to be an ideal platform to debate various
proposals. A decision is likely to emerge after about three months of intensive debating. But the
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two other tasks, coordination and providing financial support, belong to our governments.
Acting as a group, we should approach government organizations, such as NSF, National
Academy of Science, or DOE, and ask for coordination and support. That is the declared
mission of such organizations. National laboratories best equipped for the selected projects
should be selected, to minimize additional costs. That is the only way to get a clear yes-or-no
answer about the new kind of nuclear activity.

How to convince governments that a relatively modest amount of additional money is worth
investing to solve the puzzle? By being organized and acting as a group rather than as
independent individuals. This kind of action was already tried, about five years ago, and it
produced a result; the second DOE investigation of CMNS would not have taken place without
such initiative. Unfortunately, that investigation turned out to be a failure. The reason is
obvious; the DOE decisions were based on voting, rather than on experimental data. Scientific
decisions should be based on available data, obtained by the most qualified scientists in the
most suitable laboratories. Voting is not part of scientific methodology.

4) Which experiments would I recommend?

If only one experiment were to be selected, my choice would be from the second subfield
(see the above table), preferably the protocol of Mike McKubre et al. Several independent,
highly qualified, investigators reported production of helium during electrolysis. Each of them
reported that results were reasonably reproducible in consecutive experiments. If two
experiments were to be selected then the second experiment would be from the last field,
preferably the protocol described in (5). But at least one more replication of the Tanzella-type
experiment would be needed; a single experiment is not enough to make the decision.
Production of helium and production of protons are undeniable nuclear signatures. No matter
which experiments will be selected, for coordinated investigations, the purpose should be the
same, to demonstrate a nuclear activity resulting from a chemical process.

Will we be able to act in unison and accomplish the first task quickly? Will at least one team
of scientists emerge, ready to cooperate with mainstream scientists in a national lab? Will they
obtain the necessary support from in at least one country? All this remains to be seen. In the
final analysis, the outcome will depend on our willingness to fight for a clear yes-or-no answer.

5) On positive and negative contributions

It is difficult to present a negative CMNS report at a formal gathering of CMNS researchers.
Most attendees want and expect positive results and convincing interpretations. Reporting
something negative is likely to produce discomfort and personal friction. What fraction of
CMNS researchers prefer to report nothing rather than reporting negative results? Reporting
negative results is just as important as reporting positive results. We all know this. But how
does this influence what we actually say, and not say, in public? Friendship and other
considerations (“that is bad for CMNS reputation”) might play a role, in practice. That would
introduce bias.
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Open Source Science Applied to CMNS Research: A
Paradigm for Enhancing Cold Fusion Prospects and the

Public Interest
Thomas W. Grimshaw

Lyndon B. Johnson School of Public Affairs, The University of Texas at Austin

Abstract
Open Source Science (OSSc) is a collaborative, voluntary (uncompensated) and
highly distributed method of research that emphasizes the use of new digital
technologies, particularly the Internet. The OSSc paradigm grew out of the open
source software movement, which has resulted in wide availability of free
software (such as the Linux operating system) as an alternative to proprietary
software products.

The public interest in the success of cold fusion has long been recognized
because of the potential social welfare benefits related to its possibilities for very
low cost energy. Cold fusion researchers, because of rejection of their field by
mainstream science and continued highly marginalized research conditions,
employ many of the methods and tools of OSSc. For example, they use websites
for posting research papers and Internet discussion groups for introducing ideas
and dialoguing online about the relative merits of those ideas.

The prospects of cold fusion success may be significantly enhanced by
extending the current informal and implicit use of OSSc-type methods to more
organized and explicit deployment under the sponsorship of a recognized
professional organization such as ISCMNS. A formal, sponsored use of OSSc
for support of cold fusion could bring powerful OSSc methods into play that are
not currently used. The prospects for cold fusion success, and the associated
public interest in that success, may be significantly enhanced by expanded and
more disciplined application of OSSc methods by the research community.

1. Introduction
Open Source Science (OSSc) is a recent development in the methodologies of scientific

investigation that departs significantly from scientific practice as it has evolved in recent
decades. OSSc is enabled by technologies of the digital revolution, particularly the Internet, and
embraces a collaborative investigative approach. OSSc grew out of Internet-supported
collaborative development of software under a paradigm known as Open Source Software
(OSS). One particularly successful example of the OSS paradigm is the Linux operating system
software.
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Cold fusion (CF) is a potentially revolutionary scientific discovery in which nuclear fusion is
achieved at non-explosive rates and at ambient (near-earth-surface) temperatures. CF1 was
announced by two research chemists2 in 1989 as a scientific breakthrough with promise of
meeting most of the energy needs of society. However, for a variety of reasons (both technical
and sociological), CF was rejected by the mainstream scientific community within a year of its
announcement.

Despite this rejection, research into CF has continued under highly marginalized conditions
by a relatively small group of capable and reputable scientists. This research appears to show
evidence of the validity of CF phenomena. With its current state of rejection and
marginalization, CF appears to be an ideal candidate for research under the OSSc paradigm, not
only because of the appeal of voluntary research contributions in the absence of funding from
conventional resources, but also because of theoretical challenges whose resolution may benefit
from the insights and perspectives of other fields besides nuclear physics.

2. The Open Source Science Paradigm
Open Source Science is a paradigm for conducting research that differs substantially from

conventional science as it has evolved in the last few decades. In the OSSc perspective,
research (and the resulting knowledge) is viewed as a public good – as belonging to the
commons – and as freely accessible rather than protected by property rights. This perspective
was initially brought forth in the context of collaborative development of computer software
(OSS) and has extended into other areas, including publication of technical literature (Open
Access, OA) and scientific investigation (OSSc).

OSSc not only reemphasizes a traditional viewpoint toward science and knowledge as part of
the commons, but it also makes use of powerful tools, such as communication and electronic
file management functions of the Internet, to further or enhance collaboration in scientific
investigation. It also encourages, and provides the means for, the synergy of many people with
different backgrounds and perspectives to attack a problem. Such collaborative effects provide
the basis for cross-fertilization among different fields and disciplines, one of the most powerful
methods of achieving new insights into a problem area3.

Although OSSc represents a constructive return to the traditional values and practices of
science, and adds significantly to scientific practice through the power of the Internet, it is not
without issues. For OSSc specifically, Schweik (2007) identifies four areas needing urgent

1 Some CF researchers have sought to replace “cold fusion” with other more accurate terms,
including “low energy nuclear reactions” (LENR), “chemically assisted nuclear reactions”
(CANR), and “condensed matter nuclear science” (CMNS). Although the new terms are
legitimate and helpful, “cold fusion” continues to be readily recognized and widely used.
2 Martin Fleischmann and Stanley Pons
3 Several websites have been set up specifically to offer rewards and provide a venue for creative
people of different disciplines to seek solutions to problems that have proven to be intractable
within the field in which they originated. See, for example, the Innocentive website at
http://www.innocentive.com.
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attention: 1) how to license digital material besides software; 2) how to achieve success in the
context of current incentive structures for researchers; modify incentives and develop a “next-
generation” e-journal; 3) how to govern collaboration under the OSSc paradigm; and 4) how to
finance projects under the OSSc paradigm.

The central question for successful application of the OSS paradigm to science (OSSc) is the
provision of adequate incentives for the broad spectrum of potential participants.

3. Cold Fusion Research and Reporting Today
If it proves to be real, CF will be good news for the welfare of humanity because it holds the

promise of providing abundant supplies of energy from nuclear sources at temperatures close to
the surface of the earth and with little or no associated harmful radiation. Despite the initial
rejection of CF, a number of capable and reputable researchers continued their investigations –
and continued to achieve positive results. For example, a recent CF publication (Storms 7007)
tabulated some 184 confirmations of excess heat (indicating cold fusion reactions) from 1989
to 2004. The situation with CF – continued affirmative results without general acceptance
initially by the scientific community – is typical for radical new discoveries and has been well
characterized by Kuhn (1986).

Cold fusion researchers, in spite of (or perhaps because of) the rejection and marginalization
of the field, have formed a relatively close-knit (although often fractious) community that has
its own methods of conduct, communication, critique and reporting of research results,. The
Internet has played a key role in the success achieved in that research. Continued and expanded
use of the Internet will be a major ingredient of support of CF research in the future. The salient
communication and reporting methods currently used are described below.

Professional Organization. The International Society for Condensed Matter Nuclear Science
(ISCMNS) is the accepted CF-dedicated professional organization. According to its
website1, the ISCMNS mission is “to promote the understanding, development and
application of Condensed Matter Nuclear Science for the benefit of the public”. The
organization is governed by a constitution and executive committee, and it maintains a code
of conduct for its members.

Conferences. The CF research community presents papers on theory and experimental
results in mainstream science conferences where such opportunities can be found. Because
of its marginalization, CF has also been the topic of dedicated conferences (International
Conferences on Cold Fusion, ICCF) since 1991, with meetings held in various countries
about every 18 months. The ICCF conferences are held under the auspices of the ISCMNS.
ICCF-14 took place in August 2008 in Washington, D.C.2 with over 180 attendees.

Peer-Reviewed Journal. As in the case of conferences, CF researchers publish peer-
reviewed papers in mainstream scientific journals – where their papers are not rejected
outright because of the topic. In response to a strong need for additional publication outlet,

1 http://www.iscmns.org/
2 http://www.iscmns.org/iccf14/index.htm
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ISCMNS has initiated a CF-dedicated open-access and peer-reviewed journal, the Journal
of Condensed Matter Nuclear Science1 (JCMNS).

Publications Repository. A website entitled LENR-CANR2 provides an online library with
a bibliography of more than 3500 journal papers, books and news articles related to CF.
Included in the library are more than 500 scientific papers in PDF (Acrobat) format. Three
e-books are also available on LENR-CANR for free downloading. Jed Rothwell’s “Cold
Fusion and the Future” (2007) is intended to “show that with cold fusion we can
accomplish marvelous things” (p. 1). Edmund Storms’ “A Student’s Guide to Cold Fusion”
(2003) is somewhat more technically oriented. Beaudette’s “Excess Heat – Why Cold
Fusion Prevailed (2002)” is one of the most important CF reference works published to
date.

Newsletters. The best-known and most complete CF newsletter is “New Energy Times”
(Krivit 2007), which is produced bimonthly by the New Energy Institute, with Steven
Krivit as editor and publisher. It is available online for downloading3.

E-mail Thread in CMNS Google Group. An e-mail thread for about 100 CF researchers is
maintained in Google Groups by Haiko Leitz4. Participation is by invitation – new members
must be recommended by a current member before being added to the list by Leitz. The
CMNS list is quite active, typically with 12 to 20 postings daily.

Thus, cold fusion research as it is conducted today already has many of the characteristics of
research under the OSS paradigm, such as performance of low-budget research by many
investigators and at many locations.

4. Enhanced Application of Open Source Science to Cold Fusion Research
Although the methods currently used by the CF research community have many open access

features, additional measures are available under the OSSc paradigm to enhance development,
communication and reporting of research results. One of the primary contributions that OSSc
can make to the CF research effort is to provide the means for increased collaboration,
particularly by those having expertise in other fields. Examples of Internet tools that are
available to enhance communication and reporting are shown in Table 1.

1 http://www.iscmns.org/CMNS/publications.htm
2 http://www.lenr-canr.org/
3 http://www.newenergytimes.com
4 cmns@googlegroups.com
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Table 1. Internet Tools for Communication and Reporting1

Information Type Online Tools Method of Distribution

News Blogs
Podcasts
Moblogging

RSS
Automated e-mail newsletter
User checking Web site

Events Calendars Open standard event formats (.ics, iCal, vCal,
etc.)
RSS
E-mail alerts
User checking Web site

Participatory
Dialog/Interactivity

Forums
Blog entry comments
Polls
Real-time text chat
Video chat
Webinars

RSS
E-mail subscriptions to comments or forums
Online polls/surveys
User interacting with Web site
Chat programs
Webinar services

Documents/Images File manager
Searchable image gallery

FTP, RSS
E-mail notification
Dashboard

Contacts/Members/
Groups

Membership database Searchable database, links in forums/blogs

Shared applications/
documents

Google Docs
Zimbra.com
Basecamp.com

Online access to shared application

Summary, quick
glance, monitoring
change

Digital dashboard Web page
Desktop application (e.g., Visio)
Mobile phone application

Under an upgraded scenario (referred to as the CF/OSSc paradigm), emphasis would be
placed on developing a clear statement of the “CF case” in a mildly promotional tone and
making it easily accessible. The various sources of CF information – books, websites, papers,
repositories, etc. – would be identified and categorized to facilitate the task of newcomers to
the field in “coming up the learning curve.” The needs of both the general public – for general
information for making an informed decision about CF – and potentially interested
sophisticated researchers, who need a more in-depth introduction to the field, will be addressed.
Table 2 provides a summary of the inferred CF research and communication requirements
along with a listing of current and proposed CF/OSSc methods of meeting the requirements.

1 Adapted from “Models of Collaboration Tools,” Prof. Gary Chapman, LBJ School of Public
Affairs, The University of Texas at Austin. Online.
http://www.21stcenturyproject.org/collaboration_tools.htm.
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Table 2. Current Methods and Proposed OSSc Approaches for CF Research and Communication

Function/Requirement Current Method or Tool OSSc Approach1

Real-Time Professional
Exchanges

-E-mail list on GoogleGroups,
managed by Heiko Leitz

-As currently; periodically post e-mail
threads on ISCMNS website

-ISCMNS assume responsibility for
GoogleGroups if/when necessary

-RSS feed feature on ISCMNS website;
webinar services; blogs & podcasts

Collaborative Publication -E-mail list on GoogleGroups,
managed by Heiko Leitz

-Post draft papers for download and addition
through collaborative research

Cross-Fertilization
Promotion

-None? -Formulate unresolved theoretical and
experimental problems and post on
ISCMNS website

-Provide management for responses from
researchers from other fields

Shared Software & Other
Tools (e.g., Experimental
Design)

-Informal exchanges among
individual researchers

-OSSc enhancement: Identify and post most
important software and tools (e.g.,
experimental software) on ISCMNS
website for online access

News -“New Energy Times” newsletter
(primarily) by Steven Krivit

-Mirror “New Energy Times” newsletter on
ISCMNS website (or at least provide
hyperlink)

-Provide Internet functions , such as blogs,
podcasts, RSS feeds

Scheduled Events -“Events” on ISCMNS and New
Energy Times websites

-As currently. Implement online calendar on
ISCMNS website to supplement Events
on existing sites

Professional Meetings &
Proceedings

-ICCF Conferences sponsored by
ISCMNS

-Mainstream science conferences
(e.g., APS March meeting)

-Conference proceedings posted on
LENR-CANR

-As currently. Post proceedings on ISCMNS
website as mirror to LENR-CANR

- OSSc enhancement: Provide webinar
services?

Publication of Peer-
Reviewed Papers

-Submit and publish papers in
mainstream scientific journals
(where available)

-Publish in newly-established
CMNS Journal

-As currently. Maintain posting of CMNS
Journal on ISCMNS

Publications Repository - LENR-CANR, operated by Jed
Rothwell

-Mirror LENR-CANR repository on
ISCMNS website

-ISCMNS assume responsibility for
repository if or when necessary

Public Awareness & Cold
Fusion Promotion

-“New Energy Times” website
(primarily), with newsletter

- LENR-CANR website, with three
downloadable books by Beaudette,
Rothwell and Storms

-As currently. Add links from ISCMNS
website

-Webinar services, FAQs, wiki, RSS feed
service for ISCMNS website

1 Most OSSc enhancements are taken from “Models of Online Collaboration” by Professor Gary Chapman, LBJ
School of Public Affairs, The University of Texas at Austin. See:
http://www.21stcenturyproject.org/collaboration_tools.htm
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5. Website Support of Enhanced Open Source Science
Implementation of CF/OSSc will make full use of the functions of the Internet. The website of

ISCMNS, the accepted CF professional organization, may serve as a suitable platform for
supporting the CF/OSSc implementation.

The ISCMNS website, as modified to support CF/OSSc research, would be set up to meet the
requirements as set forth in Table 2. The homepage would be designed for the general public but
would also fully support the sophisticated needs of the CF research community. Hyperlinks to the
topical webpages and other CF websites will be used extensively to avoid “information overload”
on the homepage.

Individual webpages on the revised ISCMNS website would be developed by CF topical area
as described in Table 2. They would range from descriptive and promotional pages for the
general public and researchers new to the field to highly technical forums and download
facilities to help researchers to collaborate on such topics as theoretical underpinnings of CF
and experimental designs and results. The following webpages are expected to be needed for
the revised website:

Basic Non-Technical CF Descriptions Shared Software and Other Tools
News and Scheduled Events Publication of Peer-Reviewed Papers
Professional Contacts and Group Members Publications Repository
Professional Real-Time Exchanges Monitoring Changes and Quick Glance
Collaborative Publication Financial Contributions
Intellectual Property Information

6. Financial Support
The issues around financial support of OSSc initiatives were well articulated by Schweik

(2007), apparently based in part on experience with the ORS project described above. The main
points of this review are summarized as follows:

Financial support must be carefully addressed for OSSc projects to be successful.

Support must be considered in two areas – the time and effort involved in contributing
to the OSSc project, and the required administrative and collaborative infrastructure.

Project financing in the past has come from seven types of revenue – government
subsidies, philanthropy, corporate consortia, corporate investment, venture capital and
investment banking, user or participant donations, and a hybrid or mix of the first six
sources.

The costs for the time and effort for contributions may be covered by sources that are
implicit in the OSSc paradigm and Mertonian science in general – donations from
contributors who gain their livelihood by other means.

Administrative and infrastructure costs may be recovered in a similar manner to that
used for OA publication costs, including compensation for ancillary support services,
subscription models, and author-pays-to-publish models.
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For the CF/OSSc project, the ISCMNS organization could establish a subsidiary foundation
to control risk to the organization and to receive and manage funds. Decisions on the overall
content and structure of the website will be subject to the approval of the ISCMNS Executive
Committee.
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ICCF-14 Summary
Thomas O. Passell

TOP Consulting, P.O. Box 336, Palo Alto, CA 94302-0336

Introduction
Some 180 people attended the 14th International Conference on Cold Fusion
held in Washington D.C., USA from August 10 through 15, 2008. This
summary is intended to highlight the key results that I found persuasive, as well
as some wider scope sociological context in which the meeting took place. This
is no substitute for a careful reading of each paper in these proceedings by each
interested person trying to advance the field toward the prime objective of
obtaining a reliable energy source to replace our existing ones. No more
significant objective can be imagined since our entire modern civilization is
dependent upon enormous quantities of energy of high quality. Quality is
roughly synonymous with energy density of the fuel and the higher temperatures
at which it can be more readily utilized. The idea of unlocking the potential
energy of the lightest elements in a fusion process is remarkable, considering the
vast amount of the fuel available on the earth. The night sky shows that the
universe is powered by fusion of hydrogen to helium at the high temperatures in
the stars. The notion that we might release the energy of fusion in a solid at
lower temperatures is a concept beyond all our expectations as recently as 20
years ago.

We have yet to demonstrate this process in a sufficiently convincing manner to
attract the required effort and funding to take these observed phenomena from
imperfectly predictable episodes to a demonstration of a controllable energy
source of high quality. Progress over the past 19 plus years has nonetheless been
steady enough to inspire a number of our scientifically-trained colleagues to
soldier on in spite of the meager funding and extensive controversy.

Sociological Context
One way to illustrate the context in which the meeting took place is to relate the background

leading to the appearance of a videotaping crew from CBS’s “60 Minutes” throughout the first
day’s proceedings. An informal inquiry led to the following picture explaining why ICCF-14
should suddenly be the subject of interest to the national media: The primary investor in the
Israeli company, Energetics, Inc., apparently requested CBS’s help in getting a wider audience
for their reports of unprecedented net energy production by deuterium in palladium cathodes.
The “60 minutes” operatives were active that first day of the meeting, interviewing several of
the attendees. They asked interviewees for their evaluation of the reliability of the evidence for
cold fusion production of energy. Among the list of interviewees was a representative of the
mainstream physics community who was asked to advise them on when and/or if CBS should
schedule this subject on the air. In my discussion with my friend Paul Grant who served in the
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role of skeptical mainstream physicist, I discovered his intended recommendation was to
postpone the airing for a year or more on the assumption that more reliable data would be
forthcoming by then. Grant also mentioned that Richard Garwin had written a letter supporting
this delay. My response to this was to quote to the CBS representative one of C. Northcote
Parkinson’s Laws, his Law of Delay. This law states that Delay equals Denial, in most practical
bureaucratic organizational situations. At this writing it is not clear what “60 Minutes” will
decide. Stay tuned!

Why bring up this tempest in a teapot? Because it illustrates the remnant of the intense
controversy surrounding this field in the first few years following the announcement by Pons
and Fleischmann on March 23, 1989. After 19 plus years the protagonists in that controversy,
who included many mainstream physicists beyond Garwin and Grant, still feel compelled to
suppress publicity about the subject. My initial reaction is that their response is reminiscent of
defenders of the faith in religious wars. In today’s climate in which “war” is waged for
government funding of research, their response may be just another battle in that “war”.

Another question to consider is “Why make a special issue over this field of research?” If the
claims of cold fusion were really as unfounded as the many wild claims of truly pathological
science, why not simply ignore such claims rather than actively suppress publicity about the
evidence? Again, it appears that the field of energy is currently so filled with competing claims
of uncertain validity that cold fusion claims are in a separate class more threatening than all the
others to existing energy research interests.

To sum up this situation, cold fusion researchers are faced with a community that resists
taking a hard look at the evidence we are generating; a community that appears more interested
in defending turf in the battle for research funds. If the mainstream community truly believed
we have no reliable evidence, why would they not just ignore us? One possible answer is the
precarious situation in the traditional field of plasma fusion (or “hot” fusion). That field has
persisted for over 50 years working heroically against the steep odds of finding a reliable
container for hot plasma with temperatures in the 100 million degree temperature range.
Having seen the situation up close in its early years (1958-1961) at Lawrence Livermore
National Laboratory, it was apparent to me even then that fundamental materials and magnetic
field instability problems might eventually defeat the effort. At this time, I personally prefer the
odds in favor of cold fusion versus “hot” fusion! Of course, both of these approaches may
ultimately prove impractical. We may be stuck with nuclear fission of uranium and thorium for
the next 40,000 years, the approximate time at which even uranium and thorium supplies are
depleted!

Review of a Small Sample of Results Presented at ICCF-14
As Thomas Edison said, even failures are valuable results because they steer you past blind

alleys in your search for something that works. Therefore I honor all the presenters at the
conference because they all are making useful contributions. Of course there is sometimes a
carryover to a meeting of scientists from the game-playing that occurs in the political arena. In
that arena they are known as dirty tricks or distractions from the agendas of most people. The
scientific method we hope is in the minds of attendees can usually detect such behavior,
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especially when the presenter makes claims that omit the evidence for such claims on the basis
of proprietary issues. Another is the assertion that the only acceptable evidence for cold fusion
would be an auto driving down the street powered by it, as was expressed at ICCF-1. Finally
the assertion that only extraordinary evidence would support extraordinary claims is made by
the same people that speak against spending enough research money to collect that
extraordinary evidence!

Finally, on to a few selected papers! For me, the most impressive results were given in four
papers:

1) S. Lesin, et al., “Ultrasonically Excited Electrolysis Experiments at Energetics
Technologies” (ET)

2) Y.Arata and Y. Zhang, “Solid Fusion” Reactor with Zero Input Energy” (AZ)
3) F. Celani et al., “Deuteron Electromigration in Thin Pd Wires Coated With Nano-

Particles:Evidence for Ultra-Fast Deuterium Loading and Anomalous, Large Thermal
Effects” (IT)

4) M. Swartz, “Excess Power Gain and Tardive Thermal Power Generation using High
Impedance and Codepositional Phusor ™ Type LANR Devices” (MS)

Paper (1) ET:

Using ultrasonic (US) cleaning and modification of cathode surfaces along with varying the
current to the cathode by use of their 3-frequency super waves by magnitudes of around 10%,
some ratios of output heat to input electrical energy of 30 to 1 were observed for times up to 40
days at net output powers up to 32 watts. While this is still far from a commercially interesting
heat source, it represents a large step forward toward such an objective. If the Arata-Zhang
experience in finding the He-4 ashes of the heat generation process almost entirely sequestered
within the metal phase, then these cathodes represent possible He-4 contents that would be
easily measurable. Also noteworthy is the extensive collaboration between the McKubre-SRI,
Violante-ENEA, and the Hubler-NRL groups in achieving these impressive results. Many
challenges remain, since the US process sometimes destroys the integrity of the fairly fragile
cathodes.

Paper (2) AZ:

Applying high gas pressures of D2 and H2 to nanometer sized Pd and Pd alloys mixed with
nanometer diameter ZrO2 apparently gives a larger heat effect with D2 versus H2. Both give the
expected exothermic heat of hydrogen absorption widely observed as a chemical heat effect.
After several hundred hours the D2 case remains above ambient temperature by 1.6°C as
opposed to essentially null temperature difference with H2. This experimental evidence is not
so convincing until we consider the data on He-4 content. The metal samples are evaporated in
the source chamber of a mass spectrometer in which the D2 sample shows 1E17 atoms of He-4
whereas no appreciable He-4 is observed in the H2 sample. The only input energy to the system
is that of the energy density of the compressed gases. If this work is confirmed, it says that
permeation of D2 gas through a metal matrix is the active process producing the cold fusion
reaction. The role of the ZrO2 particles is apparently to prevent agglomeration of the nanometer
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sized Pd and Pd alloy particles. Apparently the surface of the particles is essential to success,
even though the He-4 appears to remain with the metal particle and not escape to the gas phase.

Paper (3) IT:

Celani and coworkers from throughout Italy showed the most innovative departure from
previous studies. Pd wires in the 50-100 micron diameter range were bundled with two Pt wires
in a set of individual fiberglass insulating tubes and exposed to 5 to 6 bar D2 or H2. The Pd
wires were coated with a chemical mixture that resulted in nanometer sized Pd particles coating
the Pd wire. Calibration with He-4 gas gave a system not subject to significant variation in heat
transfer conditions. The two Pt wires served as a calibration joule heater and distributed
thermometry, respectively. The D2 case showed an extra 5 watts with 52 watts input whereas
the H2 case gave less than 1/3 as much. These wire systems are fragile and many experiments
failed early. One set of wires lasted for 50 days, however. A major fraction of the excess power
was obtained when 10 watts of input power was added by current applied down the axial length
of the Pd wire. Even though extremely rapid loading was observed with the coated Pd wire, the
electromigration was carried out with Pd in the lightly loaded alpha phase. This was done
because the diffusion rate of H2 or D2 is 100 times faster in the alpha phase than in the highly
loaded beta phase! The advantage of this and other gas-metal systems is their ability to operate
in the several hundred degrees Celsius range at which the energy produced will be more
commercially useful. It will be interesting if He-4 is found in the active Pd wire in amounts
commensurate with the excess heat observed.

Paper (4) MS:

Swartz has produced a long series of papers on calorimetry of Pd and Ni using nearly pure
electrolytes of very high impedance, hence requiring much higher voltages than is widely used
by other electrochemists. His results show excess power and energies well above any
reasonable uncertainties, and in a few cases observing excess heat with Ni in light water. His
evidence for socalled heat after death (HAD) after all input power is turned off is particularly
convincing. If He-4 has been produced within all these cathodes, they should be tested for He-4
content to compare with the total excess energy produced during the life of each cathode.

Other interesting papers include those by Dufour et al., Nohmi et al., Parchamazad-Miles,
and Kasagi et al.:

Dufour used an ice calorimeter of high accuracy to observe the known heat of absorption of Pd
by H2 and D2. In the D2 case, evidence for a delayed heat effect was obtained not present in the
H2 case in one of two attempts. Again as with the AZ experiment, simple loading to normal
levels (0.6 D or H per Pd atom) appears to trigger an unusual excess heat effect with D2 and not
H2. The total HAD was about 10 joules/gram of Pd or about 1.0 Kilojoules/mole of Pd. It is not
clear why HAD showed up in the first try but not in the second try. It is remarkable that all
these experiments were for D and H loading in the conventional range of about 0.6 D or H/Pd.
Also this was all with just a single ingestion of D2 or H2 at 0°C and 2 bars pressure.

Nohmi et al. made a serious and potentially effective effort to replicate the claims of AZ with
fine particles of Pd. No mention was made of adding ZrO2 particles. Their results using a flow
calorimeter appears to be positioned to provide a credible measurement of excess energy. Their
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plan is to also measure any He-4 generated, presumably within the metal particles as originally
claimed by Arata and Zhang.

Parchamazad et al. explored the possibility of producing Pd particles in the well-characterized
pores in the zeolites. These pores have useful characteristics for chemical catalysis. The authors
believe some interesting phenomena similar to gas-metal reactions reported by others might be
observed in this unique environment.

Kasagi et al. described a uniquely-designed detection system for high energy charged particles
(alphas?) hypothesized to be emitted from the permeation of D2 gas through the complex
Pd/CaO films used by Iwamura, et al. in which transmutations Cs→Pr and Sr→Mo have been 
claimed. The authors have done a heroic job of particle detection and claim that even 3 counts
per day are significantly above the cosmic ray background.

Discussion
Considering the size of the material and temperature conditions matrix among the solids and

gases energized by Pons and Fleischmann’s initial 1989 announcement, it is small wonder that
we have only scratched the surface of possible experiments. Still lacking is a definitive
measurement of both excess energy and the hypothesized He-4 ashes from that excess energy.
Professor Arata and Dr. Zhang have come the closest to this objective but clearly such a clear
cut connection would be the holy grail of this scientific research.

Many of the papers at ICCF-14 were light on hard evidence and heavy on hopes for more
detailed experimental evidence. The lack of robust funding is the greatest impediment to
resolving the scientific issues associated with this subject.

Thanks to everyone who participated in this meeting. I invite all my readers of this all too
brief and inadequate summary to scan all the published papers. There are nuggets of helpful
information in many of them that may eventually lead to one of the most significant research
results in the past 200 years.
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Honoring Pioneers

For most fields of science, there are one or two people who are essentially the originators of
the field. In many very important areas, they are the people recognized by receiving a Nobel
Prize or some other major prize. Fleischmann and Pons are those people in this field. Then,
there are other intellectual pioneers, who have two characteristics. They were active in the early
days of the field and they made major contributions. In the case of LENR, there are very
roughly a dozen such people, most of them still alive. However, the scientists who pioneered
the study of nuclear reactions induced by chemical effects are relatively old. Many of them
were at or near retirement, when the field originated two decades ago. Some of them were
recognized after their death, as is the case with Professor Guiliano Preparata, who later had a
medal named after him.

The organizers of ICCF-14 were moved by the notion that it is appropriate to honor key
members of the LENR community while they are still alive and contributing. But, there were
and are are too many such scientists to honor within the time constraints of one conference.
Hence, two particularly important leaders were singled out for recognition. They were Yoshiaki
Arata from Japan and Stanislaw Szpak from the US. The form of the honor was a pair of
sessions, each devoted to the work of those individuals. Commemorative plaques were
presented to the two pioneers. Broad reviews of the work and results of Arata and Szpak were
presented. This appendix contains the papers that resulted from the two sessions.

Talbot Chubb graciously agreed to introduce the work of Professor Arata. That introduction
is summarized in the following paper. It set the stage for a presentation by Professor Arata on
his recent and remarkable findings. He described the development of a “solid fusion” reactor
that he invented and still studies with his long-time collaborator, Dr. Yue-Chang Zhang. Their
data shows that the reactor, loaded with Pd nanoparticles coated with zirconia and pressurized
with deuterium gas, produced nuclear heat for “hundreds of hours”. When operated with
hydrogen gas, no heat was produced. The remarkable demonstration was accomplished with no
electrical power input to the reactor during the heat-producing runs.

Frank Gordon organized the session honoring Dr. Szpak, who was unable to travel to
participate in the session. His colleagues presented both what was done and what was found,
while using the “co-deposition” technique, which was invented by Szpak. In that method, there
is no need to acquire and characterize Pd metal for use as the cathode in electrolytic LENR
experiments. Rather, the Pd is deposited from a heavy water electrolyte. Such an experiment
takes less time than those in which a sheet or rod of Pd is loaded with hydrogen isotopes. The
team found a wide variety of effects during the last two decades, which were systematically
reviewed at ICCF-14. A paper summarizing those findings follows. The last paper in this
section is a set of references to 21 papers published by Szpak’s group in refereed journals. Brief
comments on each of the papers are provided in the set of references.
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In Honor of Yoshiaki Arata
Talbot A. Chubb

Physicist Consultant, 5023 N. 38th St., Arlington VA 22207, USA, tchubb@aol.com

Abstract
This paper seeks to make readers aware that Arata and Zhang (A&Z) in 2007/8
demonstrated operation of an autonomous fusion “heater”. The heater generated
a steady outflow flow of heat at slightly above room temperature throughout a
run lasting hundreds of hours. The steady nuclear heat occurred after a brief

burst of chemical heat during D2 absorption. No other energy input was present.

The paper also seeks to make readers aware that in 2005 A&Z demonstrated
continuous fusion heat at 191°C in a gas loaded reactor which was initially
maintained at 141°C by an electrical heater. It is estimated that 25% of the heat
delivered to the room was fusion energy and 75% was electrical heater energy.
The catalyst temperature was high enough for practical generation of electrical
power.

Introduction
The paper introduced a session on catalytic fusion in honor of Professor Arata and the

pioneering work which he has carried out in conjunction with Yue-Chang Zhang (A&Z). The
A&Z team has pioneered and defined what is meant by nano-Pd fusion. They proved that
nuclear reactions can be made to take place in nanometer solid material. Their work opens the
road to development of commercial fusion heaters.

Dr. Arata is Professor Emeritus at Osaka University. Born in 1923, he graduated from Osaka
U. with a Bachelors in Engineering in 1949, received a Doctorate in 1957, and became
Professor. in 1964 . He started Japan’s plasma fusion program. Since there was no D2 gas

available for his arc plasma studies, he made his own deuterium gas by plating D2O electrolyte
onto a Pd cylinder, collecting the gas that permeated the cylindrical tube. In 1958 he achieved
the world’s record for arc discharge current density. He was a pioneer in electron beam and
laser beam welding and became Director General of the Osaka U. Welding Institute in 1977.
Arata was elected Member of the Japan Academy in 1988, received the Arthur Schawlow Prize
in 1992 from the American Society of Metals, and was honored by the Emperor of Japan in
both 1995 and 2006. He has received many other awards.

Arata and Zhang began their cold fusion studies in 1989. Arata applied his engineering
science background to the goal of proving or disproving cold fusion reality. He was initially a
skeptic.

A&Z published their first nano-Pd work excess heat studies using a “DS-Cathode” in 1994,
presenting strong evidence that fusion heat release had occurred.
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A&Z introduced new terms to describe the new hardware and concepts that were unique to
their investigations. One of these is “DS-cathode”, which means “double structure” cathode,
i.e., an outer Pd metal cylinder with stainless steel (ss) welded end pieces and an inner reactive

filling of nano-Pd powder. D
+

ions are deposited onto the Pd cylinder, and the cylinder is filled
with contacting nano-Pd grains. The A&Z cathode contrasts with the pieces of wire, sheet, or
metal rod used by other experimenters in 1989. Another A&Z term is “spillover effect”, taken
from catalyst chemistry, where it means that effective catalytic area exceeds area measured by a

standardized N2 adsorption protocol. As used here it means that the evacuated nano-Pd catalyst
bed absorbs and redistributes by grain-grain contact the deuterium permeating a DS cathode’s
Pd wall, creating an almost uniform D/Pd ratio throughout the catalyst bed. The high surface
mobility largely avoids the deuterium density gradients existing in electrolysis-loaded bulk Pd
cathodes. The chemical pumpimg caused by high surface mobility and high absorbtivity at low
pressure can be called “spillover effect” pumping.

Figure 1. The experimental setup used in 1996.

Figure 1 shows the experimental setup used in 1996. The cabinet on the left maintains a
reservoir of constant temperature water that serves as the water supply for 2 constant
displacement pumps sitting on the desk. The pumps feed water to 2 independent test cells
inside dewars in the styrafoam box on the right. The styrafoam box is covered by a lid during
normal operation. Electronics in the cabinet to the far right digitizes input voltage and current
which are used to calculate input electrolysis power. Inflow and outflow temperature for the 2
cells is measured by thermocouples. The stability of the water flow calorimetry is verified by
the equality of input and output powers during an incubation period within which no fusion
power is liberated, as shown in the first part of Figure 3.1
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Figure 2. Illustration demonstrating spillover effect pumping

Figure 2 shows how A&Z quantify the hydrogen absorption behavior of Pd-black by

measuring its ability to absorb inflowing H2 at low pressure. In a standard test a constant cc-

atm/min of H2 gas flows into a vessel of known volume. The pressure-rise time history of
powder samples is compared with the pressure rise of the empty test vessel. When the test
sample is Ni powder, the pressure rise is faster than for the empty vessel, partially due to inertly
occupied volume. When the sample is Pd-filings, there is a small lag in the pressure rise due to

the Pd absorption of H2. When the test sample is Pd-black, there is initially no measured rise in
pressure, presumably due to immediate transfer of adsorbed H throughout the catalyst bed,
accompanied by its rapid absorption within the individual nanometal grains. The duration of the
spillover effect period has been used by A&Z to identify good catalyst for fusion promotion.

Figure 3. A&Z excess heat run published in 1994
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The top portion of Fig. 3 shows plots of output power, input power, and cell voltage vs. run
time. Fig. 2 bottom shows excess power = output minus input power vs. run time. The period of
zero excess power between times A and B is called the incubation period.

Figure 4. Electrolysis cell and DS-cathode used in 1995. DS-cathode shown on right.

Figure 5. Stainless steel (ss) manifold system used in analysis of desorbed gases
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By 1996 A&Z had designed a mass spectrometer system to look for
4
He and

3
He in their

post-run powder. They constructed a turbo-pumped welded ss manifold with separate
quadrupole spectrometers which were programmed to repeatedly scan the mass-4 and the mass

3 peaks. They included a small oven to outgas strongly absorbed D2, HD, and He molecules in

post-run catalyst powder, and later added a titanium sputter pump to selectively absorb D2 and
DH in isolated samples of desorbed gas, as shown below, further verifying the identity of the
4
He peak. As-received Pd-black shows no

4
He.

Figure 6. Spectra of sample of desorbed gas

The clearly resolved
4
He and D2 peaks shown in Fig. 6 demonstrate what can be

accomplished by a skilled experimenter using a high quality quadrupole mass spectrometer. In

one run A&Z actually resolved the
3
He peak from the DH peak, which is much more difficult.

During the period 1992-2001 A&Z convinced themselves that cold fusion was real. They

published 10 excess heat runs, showed excess heat when D2O electrolysis was used and not

when H2O was used, and when Pd-black was used and not when Pd filings were used. They

observed
4
He and sometimes

3
He in post-run powder, and not in as-received powder, and they

successfully exported their DS-cathode experiment to the McKubre’s SRI lab. In 2002 they
made a major advance, producing fusion in ZrO2+nano Pd catalyst.1



748

Figure 7. New catalyst shows nano-Pd embedded in ZrO2

Figure 8. H/Pd = 2.9 at 100 atm

The invention of ZrO2,nano-Pd catalyst by the Institute of Materials Research at Tohoku U.
permitted gas loading to replace electrolysis. Their catalyst is produced by a well defined

protocol.2 In 2005 A&Z demonstrated fusion heat at 141°C starting temperature. D2

pressurization of new catalyst raised catalyst temperature to 191°C. Catalytic fusion power =
~0.33 × the heater power that had maintained reactor wall at 141°C.1



749

Figure 9. Deuterium deposited by D2O electrolysis onto DS-cathode containing ZrO2, nano-Pd catalyst
produced 3 weeks of stable excess heat at 10 W. Integrated heat ≈ best hot fusion result. 

Figure 10. Gas loading tests at elevated temperature

The DS-Cathode is called the inner–vessel of a double cylinder reactor. Four tests were
carried out using a reactor pre-heated to 141°C:

(1) D2 flows into volume between outer and inner vessels, no catalyst
(2) H2 flows into volume between outer and inner vessels, uses Pd–black: Tout > Tin

(3) D2 flows into volume between outer and inner vessels, uses Pd–black: Tin > Tout

(4) D2 flows into volume between outer and inner vessels, uses ZrO2,nano-Pd catalyst: Tin

>Tout and Tin rose from 141°C to 191°C

Test 2 shows that no heat is generated when the catalyst is Pd-black and the pressurizing gas

is H2. Test 3 on lower left shows reversed heat flow from Pd-black catalyst. Heat is flowing
from the inner vessel that holds the catalyst towards the outer vessel wall where the electrical

heater is located. Test 4 shows that when ZrO2,nano-Pd catalyst is used the heat flow from
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catalyst to outer vessel wall is 7 times greater than when Pd-black is used. The study indicates
that a larger system of the same design would generate enough catalytic fusion heat to permit

the heater to be turned off. This means that ZrO2,nano-Pd catalytic heaters can be used to
provide fusion heat at 191°C.

Figure 11. Autonomous heat with D2; no nuclear heat with H2

Figure 12. Test reactors

In their 2007/8 study A&Z replaced the double cylinder reactor used in 2005 with a simple

single stainless steel cylinder sealed off at both ends and containing 7 grams of ZrO2,nano-Pd
catalyst. No internal Pd cylinder was used. The reactor was well insulated and operated at room
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temperature. Zero electrolysis and zero heater power were used in the experiment. The catalyst

bed was first evacuated. Then a Pd-filtered inflow of D2 gas was applied so as to gradually
raise the reactor vessel pressure towards 100 atm.1 Fig. 12 shows 2 thermally insulated test
reactors.

During the D2 gas inflow period there was initial heat production due to the exothermic

formation of palladium deuteride PdDx. Reactor wall temperature rose from room temperature
to about 34°C. The chemical heat flowed out of the system, so that by about 33 hours of run
time all chemical heat had been lost to the room temperature environment. The assembly
surface temperature returned gradually to 1.8°C above room temperature, and remained at

1.8°C above room temperature for hundreds of hours. A control run with H2 gas inflow showed
a comparable initial-transient wall temperature with a subsequent fall to room temperature by
run time = 9 hr. The only plausible energy source for the sustained higher temperature

produced by D2 pressurization is the catalytic release of nuclear energy.
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Establishment of the “Solid Fusion” Reactor
Yoshiaki Arata and Y-C Zhang

Abstract
A gas-loaded fusion reactor operating at room temperature using ZrO2 + nanoPd
catalyst produced nuclear heat for hundreds of hours when pressurized with D2

gas, but no measurable nuclear heat when pressurized with H2.
4He was

produced during the D2 run, and not during the H2 run. No electrical power was
supplied to the reactor during the runs, thereby demonstrating operation of an
autonomous fusion “heater”.

Introduction
About 50 Years ago (1955-1958), one of the authors (Y. Arata) investigated “solid-state

plasma fusion” (simply “Hot Fusion”) together with “thermonuclear fusion”, he was the first
researcher in the world to discover “Solid Fusion”, as well as the first researcher in Japan to
discover “Hot Fusion”. Moreover, on Feb 6, 1958, he carried out large “open experiments” for
the general public, which strongly impacted not only Japan but also the world, although he was
at a young age (33 years old) at that time.

In addition, the authors continued to demonstrate experimentally the existence of “Solid
Fusion” for the first time in the world, by publishing research reports in over 70 papers(1-53)

presented in the Proc. Japan Acad., and other societies during about 20 years (1989~2007). In
these experiments, many kinds of alloys, which include Pd and Pd-black etc. were developed
and used as specimens. Recently, the authors started to develop the usefully practical reactor of
“Solid Fusion” (Solid Reactor), and it was achieved some month ago at last. This reactor is a
remarkable improvement over the many known models developed so far.

[Among many things that Arata learned during his hot fusion studies was that high
temperatures occur when bulk Pd metal containing a large D/Pd ratio is exposed to air. When
Fleischmann and Pons (F-P) reported high temperatures and the melting of a Pd electrode, he
recognized that air likely had made contact with the test electrode and oxidized the dissolved
deuterium. Since these F-P studies had not been carried out in an argon atmosphere, he
resolved to convince himself whether or not “cold fusion” was real. As a result, considerable
independence has characterized the Arata and Zhang (A-Z) program.]

“Solid Fusion Reactor” Experiment*
Figure A shows the principle of the “Solid Fusion Reactor” which is constructed with the

following system. Firstly, microscopic solid fine powders are set inside the high vacuum,
stainless steel vessel, and then pure D2 gas is injected as “Streaming D2 gas” into the stainless
steel vessel. This “Streaming D2 gas” penetrates instantly into the many solid fine samples as
the “Streaming Deuterons”(=D+-Jet stream”) without storing inside the stainless vessel.
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This was an amazing event. Moreover at this time, nuclear fusion reaction was generated
inside the solid with synchronous creation of both much Helium (4He) and large thermal energy
under the equation:

2D + 2D = 4He + thermal energy (a)

(4 2D = 2 4He + thermal energy) (b)

Figure A. Principle of “Solid Fusion” Reactor Vessel. (a): Reactor before introduction of D2 or H2 gas (only
stainless steel vessel and sample (b): Introducing of D2 or H2 as the D2 or H2 -”jet-stream” into reactor

vessel; and then D+ or H+ -”jet stream” penetrate into the sample)

(Note) : If D2 or H2 was introduced, D2 or H2 -”jet stream” immediately penetrates into the
sample as D+ or H+- “Jet-stream: and Fusion Reaction”, (4He and thermal energy) immediately
generated in the case of the “D+-jet stream”; but in the H+-jet stream” only chemical reaction
heat is generated, (It will be explained in detail in Fig. 2, Fig. 3, Fig. 6 for D2 and Fig. 4 for H2).

Experiment and discussion
These experiments show the characteristics of “solid nuclear fusion reactor suitable for

practical use”.
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Figure 1. Experimental Device

Figure 1 is a diagram showing the principle of the “Solid Fusion Reactor” suitable for
practical use. The fuel for the reactor is D2 gas 4 having a high isotopic purity (almost 100%).
The vessel 2 is made of stainless steel. A sample is provided within the high vacuum vessel 2.
The inner temperature Tin is measured by a thermocouple placed on the central axis of the
sample. The temperature Ts of the stainless steel vessel 2 is measured by a thermocouple placed
on the outer wall of the vessel 2. The D2 gas generator 4, the vessel 2 and the vacuum pump 7
are coupled to each other via the stainless steel pipe 3. The valves 5 and 6 are connected to the
stainless steel pipe 3. Opening and closing of the valves 5 and 6 is controlled by the controller
8. The feature of the reactor is that once the D2 gas is supplied to the vessel 2, the supplied gas
directly enters into the sample as the “D+-jet stream” without staying within the vessel 2. The
reaction occurs between these streaming deuterons within clouds of electrons within the
sample. In other words, where the supplied D2 gas is converted into 4He and thermal energy
only in accordance with the following formula:

2D + 2D = 4He + thermal energy (a)

(4 2D = 2 4He + thermal energy) (b)

Here, the thermal energy includes additionally the chemical energy generated between
“streaming deuterons” (= D+-jet stream”) and “sample solid atoms”. In other words, during the
reaction period, the reactor serves as “4He generation reactor” as well as a “thermal energy
generation reactor”. It can be understood that this reactor is an ideal reactor suitable for
practical use.
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Figure 2. Simultaneous generation of thermal energy and 4He

In the case where the sample is ZrO2-Pd (nano Pd) alloy, as shown in Figure 2, the nuclear
fusion reaction rapidly occurs inside the sample simultaneously with the supply of D2 gas, and
the thermal energy is generated (in which, chemical reaction energy generated between “D+-jet
stream and sample atoms” is included). Then, “D+-jet stream” was stopped, in other words the
generation of thermal energy is stopped simultaneously with the completion of the nuclear
fusion reaction, which is called as the “Jet-Fusion”. During the “Jet-Fusion” reaction period,
the gas pressure within the reactor is zero, and all the supplied D2 gas enters as the “D+-jet
stream” into the sample without staying in the reactor, and chemical reaction energy occurs
inside the sample. For instance, each 2~4 D-atoms in the “D+-jet stream” are coagulated as the
“lumpy solid-state deuterons” (simply “Solid-deuteron”)(52) inside the innumerable each crystal
lattice “space” (“electron box”)(52) within the sample solid, and these “Solid deuteron” fulfill its
function to create the “Solid nuclear fusion reaction”. In other words, “Solid-deuteron”
corresponds to the “Nuclear fuel”(52). And then, the generation of the thermal energy is stopped
simultaneously with the completion of the “Jet-Fusion” reaction. Thereafter, the D2 gas is
accumulated within the reactor and the gas pressure Pin within the reactor is increased over
time, unlike the reaction period during which Pin is equal to zero.
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[The protocol for producing the ZrO2-nanoPd catalyst is given in Ref. (54). The protocol for
preparing the catalyst before use is different from that used with Pd-black. Prior to exposure to
D2 gas, the ZrO2-nanoPd catalyst is first reduced by a controlled inflow of D2 at about 20 cc-
atm/min, next is outgased at 150°C until a vacuum of about 6 x 10-7 Torr is achieved, and then
is cooled to room temperature. Ref. (58). Figure 2 shows the end of the cooling interval during
run time interval 0 - 50 min, and the start of the Jet-Fusion period at time = 50 min. ]

This experimental result is a very epoch-making one which is beyond any expectation. This
is an unexpected new phenomenon. This new phenomenon can occur in the same manner in the
case where another sample is used, as shown in Figure 3. This should be called “historical
phenomena”

Figure 3. Simultaneous generation of thermal energy and 4He

In order to understand this new phenomena more deeply, another definitive experimental
result will be presented based on the above conclusion. It is the comparison between D and H
from the viewpoint of the nuclear fuel. In the past 20 years, it has been well known that the
authors were far ahead of others and achieved brilliant success on “verification of solid
fusion”.(1-53) The authors named this device a “verification reactor”. The authors continuously
developed several kinds of verification reactors, not only one kind of verification reactor,
confirmed the “verification of solid fusion”, and published the results in reports. Fifty-five are
listed at the end of this paper. One example of the “verification reactor” is a world-famous
electrolysis-type reactor using D2O or H2O: “DS-cathode”(=“Double Structure Cathode”). With
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the DS-Cathode, D/H is generated within the electrolytic solution of D2O/H2O, i.e., within the
Cathode. The generation of D/H corresponds to the presence/absence of the solid fusion
reaction. In the former case where D is used, anything other than a small amount of chemical
reaction heat cannot be recognized.

Figure 4. Heat Generation for H2 Introduction

The comparison between D and H is made from the viewpoint of the nuclear fuel, using a
newly developed “practical use reactor”(“Solid Reactor”). In the case where D is used, an
intensive reaction (4He and thermal energy) due to the solid fusion occurs for both the
“verification reactor” and the “Solid Reactor”. On the other hand, in the case where H is used
as shown in Figure 4 and Figure 7[A], [B], chemical reaction heat is generated, but 4He is not
generated at all.
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Figure 5A. Comparison of generation characteristics of Nuclear fusion during “Skirt-Fusion” zone for each
fuel (0~300min)

Figure 5B. Comparison of generation characteristics of Nuclear fusion during “Skirt-Fusion” zone for each
fuel (after 300min)
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The difference between the “Solid Reactor” and the “verification reactor” is that the structure
of the “Solid Reactor” is much simpler than that of the “verification reactor”, and the reaction
period of time of the “Solid Reactor” is in comparably shorter (10-2~10-3 times) than that of the
“verification reactor”, although the principle of these reactors is the same. In the “Solid
Reactor”, the stream of D+ (“D+-jet stream”) directly and entirely enters into the sample for a
very short period of time. On the other hand, in the “verification reactor”, this phenomena
occurs indirectly, and therefore, a very long period of time is required for the reaction. For
instance, D-atoms should be passing through the wall of Pd vessel in the “DS-Cathode” with a
long period of time.

Based on this experimental fact and the comparison result between Figure 2 and Figure 3, it
can be clearly understood that this is a historical experimental fact.

Moreover, the relation of each gas temperature (red line/Tin) and vessel; temperature (black
line/Ts) as shown in Fig. 5A and Fig. 5B; which indicated through long period with expanded
scale in temperature compared with Fig. 5A. It is clear that both gaseous and vessel
temperature (C) in the H2 gas drop into the room temperature (D-line) is very short period.
However, both A and B samples continue in long and long period at the separated state
between red Tin and black Ts lines(T=Tin-Ts: this is very important “T-characteristics”).
These results depend on the continued nuclear reaction of the “Skirt-Fusion”. This is the
extreme very important result. These phenomenon continue about several hundred hours.

Finally, the D2 pressure characteristic in the case where there is no sample within the vessel
is shown in Figure 6. In this case, once the D2 gas is supplied to the vessel, the increase in the
pressure Pin is started immediately as shown in the red line and then the pressure Pin is
increased over time. On the other hand Tin (inner temperature) and Ts (vessel temperature) are
not influenced by the supply of D2 gas at the room temperature (i.e. Tin and Ts are not changed).
Even though Pin is changed, Tin and Ts (always, T=Tin-Ts=0) are not changed as shown in
Figure 6. This is common sense in the conventional art, and conforms to the experimental
result.

Consequently, “Skirt-Fusion” start immediately at the end of “Jet-Fusion”, and continue in
long period (over 100 hours) as shown in Fig. 5B. Generated heat energy were about 4.4 kJ in

“Jet-Fusion” 18 kJ/hour) and about 200 kJ in “Skirt-Fusion(250 kJ in “Skirt-Fusion”(4
kJ/hour). About 5 x 1015 4He were produced in “Jet-Fusion” and about 3 x 1017 4He in “Skirt-
Fusion” zone. Sample is ZrO2-Pd alloy (6.5 gram) in this case.

[Line Plots A are for ZrO2-Pd alloy (6.5 gram sample) and Line Plots B are for ZrO2-Ni,Pd
alloy (18.4 gram)]
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Figure 6. Gas pressure characteristics within vessel (no sample)

In order to further clarify this conclusion, Figure 7[C](within fuel gas) and Figure 7[D]
(within sample solid) are shown using Mass-spectrometer. In particular, it can be understood
that a large amount of 4He is generated within the sample solid as shown in Figure 7[D]. It is
well known as the characteristics of 4He cannot enter into any solid and 4He cannot egress from
any solid under the temperature level from the room temperature to several-100°C. Figure
7[C], [D] shows a situation in which a large amount of 4He fully fills into the sample during a
very short time. And then, it should be named as the Jet-nuclear Fusion Reaction (simply “Jet-
Fusion”), because of these “Solid nuclear fusion reactions” generated like a jet cleaning
extremely short periods as shown in Figures 2, 3 and 7. This clearly shows that this amazing
phenomena results from the reaction within the sample.

Accordingly, this reactor is a thermal energy generation device as well as a 4He production
device. It is obviously clear to us which one of the following is more important to human
beings: (a) the thermonuclear fusion device of the “era”; or the solid nuclear fusion described
above.

It is considered that the solid nuclear fusion described above is useful for an energy source
for homes, cars, ships airplanes and the like. Quickly implementing measures is desired in view
of the current air pollution problem. It is possible that a further science and new industry are to
be developed.

In the last word, in very important for “Actual Nuclear Reactor” that the solid nuclear fusion
reaction does not generate any pollution, whereas a hot nuclear fusion reaction is commonly
known to generate a considerable amount of harmful pollution.
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Figure 7. Mass analysis result for fuel (H2 or D2) and reaction product (4He)
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Note on Sources
The Abstract is a rewritten version of a statement on the Cover of his Arata Award lecture at

ICCF14(54). Explanations by editor (Talbot Chubb) based on References (52-55) are enclosed in
square brackets. Text used in the Abstract is based on a presentation made by Arata and Zhang
on May 22, 2008 in Osaka, Japan(53).
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Glossary
Cold fusion as used in this paper means dd fusion in bulk Pd as studied by F-P and followers,
also referred to as F-P effect

D+-Jet Stream means Jet-Fusion deuterons adsorbed onto nanoPd catalyst where metal
electrons provide charge neutralization

DS-Cathode means same as Double Structure Cathode: hermetically sealed vessel with Pd
cylinder and ss welded end pieces, filled with nanoPd catalyst

Electron box is envisioned cubic volume containing 4 electrons + 4 deuterons in octahedral site
of fcc lattice(51,57)

Hot fusion is the same as plasma fusion

Jet-Fusion reaction means nuclear fusion occurring during Jet-Fusion zone

Jet-Fusion zone means run-time interval during which D2 or H2 gas is flowing onto sample and
back pressure in reactor is too low to record on mechanical gage.

Sample means catalyst bed material

Skirt-Fusion zone means run-time interval starting at end of Jet-Fusion zone and continuing
thereafter. The verb “skirt” means “to form edge of” (Oxford Dictionary)

Solid-state fusion is same as solid fusion

Solid fusion means nuclear fusion in a solid containing nanometal Pd: sometimes called “metal
catalyzed fusion”, also referred to as A-Z effect

Solid Reactor means same as Solid Fusion Reactor: gas-loaded reactor producing heat and 4He
without using any applied electrical power

Streaming D2 gas is same as Streaming Deuterons: long mean free path D2 molecules enter
reactor against negligible back pressure before impacting nanoPd

Thermonuclear fusion is same as plasma fusion, as sought in ITER program

Verification reactor means electrolysis-loaded DS-Cathode containing nanoPd catalyst and
producing excess heat
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ABSTRACT
The Pd/D co-deposition process was developed by Stan Szpak at the Naval
Laboratory in San Diego as an alternative means of initiating LENR. Besides
heat, other nuclear products that have been measured using Pd/D co-deposition
include tritium and the emission of γ- and X-rays, neutrons, and energetic 
particles. This communication summarizes 19 years of LENR research that has
focused on the Pd/D co-deposition process.

In March 1989, two chemists in Utah, Fleischmann and Pons, announced that they had
performed electrochemical experiments that produced more excess energy than could be
accounted for by chemical reactions. Therefore they speculated that the source must involve
nuclear reactions and the effect became known as “Cold Fusion.” The claims of Fleischman
and Pons caused a global sensation. Much of the uproar was due to the fact that their
observations disagreed with the accepted theory of nuclear reactions. Within days scientists
around the world had started work on duplications of the experiments. Many of these efforts
failed. Reasons for the failures varied. Many researchers used palladium cathodes whose past
histories were unknown. Others used improper cell configurations that precluded achieving the
high D/Pd loadings necessary to initiate the effect. Still others did not realize that, with bulk
electrodes, long incubation times were necessary to produce the effect. However, despite the
large number of failures, there were other scientists who did observe anomalous behaviors that
could not be explained. These other scientists continued to investigate the effect, which is now
called Low Energy Nuclear Reactions (LENR).

Stan Szpak, an electrochemist at the Naval laboratory in San Diego, developed the Pd/D co-
deposition process as a means of initiating LENR that greatly reduces the incubation time and
gives reproducible results. In this process, working and counter electrodes are immersed in a
solution of palladium chloride and lithium chloride in deuterated water. Working electrode
substrates that have been used include Cu and Au foils and Ni mesh. Palladium is then
electrochemically reduced onto the surface of the working electrode in the presence of evolving
deuterium gas. SEM analysis of electrodes prepared by Pd/D co-deposition exhibit highly
expanded surfaces consisting of small spherical nodules.1,2 Cyclic voltammetry2,3 and
galvanostatic pulsing4 experiments indicate that, by using the co-deposition technique, a high
degree of deuterium loading (with an atomic ratio D/Pd>1) is obtained within seconds. These
experiments also indicate the existence of a D2

+ species within the Pd lattice. Because an ever
expanding electrode surface is created, non-steady state conditions are assured, the cell
geometry is simplified because there is no longer a need for a uniform current distribution on
the cathode, and long charging times are eliminated.5 Using a Dewar-type electrochemical
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cell/calorimeter, it was shown that the rates of excess enthalpy generation using electrodes
prepared by the Pd/D co-deposition technique were higher than that obtained when Pd bulk
electrodes were used.6 Positive feedback and heat-after-death effects were also observed with
the Pd/D co-deposited electrodes. In one experiment that was done in the open air, boil off of
the electrolyte occurred as well as melting of the Pd deposit, Figure 1a (Note Pd melts at
1554.9C).1 Infrared imaging of electrodes prepared by Pd/D co-deposition, Figures 1b and 1c,
show that the working electrode is hotter than the solution indicating that the heat source is the
Pd/D co-deposited electrode and not Joule heating. As shown in Figure 1b, the heat generation
is not continuous, but occurs in discrete spots on the electrode. The steep temperature gradients
of the hot spots, Figure 1c, indicate that the heat sources are of high intensity and located very
close to the contact surface.

Figure 1. (a) SEM of the Pd film showing features consistent with Pd melting under water. Infrared images
of the electrode surface prepared by Pd/D co-deposition. (b) View of the obverse side of the cathode showing

the distribution of hot spots ranging from <29C (purple) to >49C (white). (c) Temperature gradients on
the back side of the cathode.

The ‘hot spots’ observed in the infrared imaging experiments are suggestive of ‘mini-
explosions’ (Figure 1b7). To verify this, the Ag electrode on a piezoelectric transducer was used
as the substrate for the Pd/D co-deposition. If a mini-explosion occurred, the resulting shock
wave would compress the crystal. The shock wave would be followed by a heat pulse that
would cause the crystal to expand. In these experiments, sharp downward spikes followed by
broader upward spikes were observed in the piezoelectric crystal response. The downward
spikes were indicative of crystal compression while the broader upward spikes are attributed to
the heat pulse and the consequent crystal expansion following the explosion.

After confirming the Pd/D co-deposition process produces heat, experiments were conducted
to detect the resulting nuclear ash. Measurements of X-ray emission,8 tritium production,9

transmutation,10 and particle emission11,12 were explored. In early experiments, exposure of
photographic film was observed that was indicative of the emission of soft X-rays.5 Using
Si(Li) X-ray and HPGe detectors, it was shown that the cathodically polarized Pd/D system
emits X-rays with a broad energy distribution with the occasional emergence of recognizable
peaks due to Pd K and Pt L peaks.8 Furthermore, the emission of X-rays was sporadic and of
limited duration. The evidence of tritium production was based on the difference between the
computed and observed concentration of tritium in the liquid and gaseous phases. It was shown

(a) (b) (c)
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that the tritium production was sporadic and burst-like. During bursts, the average rate of
tritium production ranged between 3000-7000 atoms sec-1 over a 24 hr period.9

Both the radiation emission and tritium production indicated that the reactions were nuclear
in origin and occurred in the subsurface. To enhance these surface effects, experiments were
conducted in the presence of either an external electric or magnetic field. SEM analysis showed
that when a polarized Pd/D electrode was exposed to an external field, significant
morphological changes were observed.13 These changes ranged from minor, e.g. re-orientation
and/or separation of weakly connected globules, through forms exhibiting fractal and molten-
like features, Figures 2a and 2b respectively. It has been reported that the micro-volcano like
features shown in Figure 2b are consistent with damage that has been observed in materials
such as Californium which undergo spontaneous nuclear fission. EDX analysis of a blister-like
such feature, Figure 2c, showed the presence of additional elements (Al, Mg, Ca, Si, and Zn)
that could not be extracted from cell components and deposited on discrete sites. 10

Figure 2. SEM of (a) fractal and (b) micro-volcano-like features formed when Pd/D co-deposition has been
conducted in an external electric field. (c) EDX of blister-like (insert) structure formed after exposure of the
Pd/D film to an electric field.

More recently, Pd/D co-deposition experiments have been conducted using “CR-39”
polyallydiglycol carbonate polymers that have widely been used as a solid state nuclear track
detectors.14 These detectors have been used to detect energetic particles such as alphas, protons,
deuterons, tritons and neutrons. CR-39 is the detector of choice in Inertial Confinement Fusion
(ICF) as it is not affected by the electromagnetic pulse that disables electronic detectors. When
traversing a plastic material such as CR-39, charged particles create along their ionization track
a region that is more sensitive to chemical etching than the rest of the bulk. After treatment
with an etching agent, tracks remain as holes or pits and their size and shape can be measured.

Pd/D co-deposition experiments were conducted using an Au wire, that was in direct contact
with a CR-39 chip, as the substrate.12 After the Pd was completely plated out, the cell was
exposed to an external magnetic field. The experiment was terminated after two days and the
CR-39 chip was etched using standard protocols. After etching, the chip was examined under a
microscope. Figure 3a shows an image of the CR-39 detector, at 20X magnification. Damage to
the detector is observed where the cathode was in contact with the surface of the detector. This

(c)

(a) (b)
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indicates that the source of the damage is the palladium that had been plated on the Au wire.
Figure 3b shows a higher magnification image taken near the edge of the cathode where there
was less damage to the CR-39 detector. The image shows both small and large, dark pits as
well as what look like double and triple pits. Figure 3c is an image of the CR-39 surface while
Figure 3d is an overlay of two images taken at two different focal lengths (one focal length is at
the surface of the CR-39 detector and the other focal length is at the bottom of the pit). On the
surface image, the pits are either circular or elliptical in shape and dark in color, Figure 3c.
When focusing deeper into the CR-39 detector, bright points of light are observed in the center
of the pits, Figure 3d. These bright points are due to the bottom tip of the conical track. The pits
also exhibit a high optical contrast. The optical contrast, shape, and bright spot in the center of
the pit are used to differentiate between real particle tracks (which tend to be dark) from false
events (which are often lighter in appearance and irregular in shape).

Figure 3. (a) 20X magnification of a cloudy area observed where the Au/Pd cathode was in contact with the
CR-39 detector during an external magnetic field experiment. (b) 500X magnification taken near the edge
of the Au/Pd cathode where less damage to the CR-39 detector is observed. 1000 X image of pits in CR-39
created during Pd/D co-deposition: (c) the focus is on the surface of the CR-39. (b) Overlay of two images

taken at two different focal lengths (surface and the bottom of the pits).

The CR-39 detectors used in the Pd/D co-deposition experiments also show evidence of
neutrons. A neutron generated during the Pd/D co-deposition has a probability of 10-5 of
encountering a proton, carbon, or oxygen atom inside the plastic. Depending upon the energy
of the neutron, it can elastically knock an atom out of place. Further etching of a CR-39
detector exposed to neutrons reveals “knock-on” tracks inside the CR-39. Figure 4a shows an
image obtained for a CR-39 detector that had been used in a Pd/D co-deposition experiment
after additional etchings. The large pit was first observed on the surface and was 10 μm in 
diameter. After longer etching, the pit on the surface gets larger in size (50 μm in diameter) and 
is shallower. However, on the left hand side of the large pit, a new elliptical track attributed to a
knock-on is observed. Microscopic examination of the CR-39 detectors after a Pd/D co-
deposition experiment also shows the presence of what appear to be triple tracks, Figures 4b
and 4c. Microscopic examination of the bottom of the triple track pit shows that the three lobes
of the track are splitting apart from a center point. The presence of three α-particle tracks 
outgoing from a single point is diagnostic of the 12C(n,n´)3α carbon break up reaction and is 
easily differentiated from other neutron interactions occurring within the CR-39 detector.15 In
order to shatter a carbon atom into three α-particles, the energy of the neutron needs to be ≥9.6 
MeV.

(a) (b) (c) (d)
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Figure 4. Images obtained at 1000X magnification. (a) Image of CR-39 detectors taken after longer etching
times showing a track due to a knock-on. (b) and (c) Images of triple tracks. In the top images, the focus is
on the surface of the CR-39 detector. Bottom images are an overlay of two images taken at two different

focal lengths (top and bottom of pit).

In conclusion, the Pd/D co-deposition process, that was developed by Stan Szpak, has
proven to be a versatile tool to explore LENR activities. Research efforts using Pd/D co-
deposition are ongoing. Collaborations have been established with Energetics to explore
coupling the Super-wave charging protocol to Pd/D co-deposition and with Dr. Mitchell Swartz
of Jet Energy, Inc. to apply his optimum operational points (OOPs) analysis to the co-
deposition process.
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SPAWAR Systems Center-Pacific Pd:D Co-Deposition
Research: Overview of Refereed LENR Publications

S. Szpak1, P. A. Mosier-Boss1, F. Gordon1, J. Dea1, J. Khim2 and L. Forsley2

1 SPAWAR Systems Center-Pacific, San Diego, CA 92152
2 J W K International, Annandale, VA.

Abstract
Scientists at the US Navy SPAWAR Systems Center-Pacific (SSC-Pacific), and
its predecessors, have had extraordinary success in publishing LENR papers in
peer-reviewed journals. This success hasn’t come easily and is due to several
factors. One key reason for this success was the courage of the SSC-Pacific
upper management in allowing scientists to conduct research and publish results
in a controversial field. The few journal editors, who had the fortitude to
consider our work, also contributed to this success. This contrasts with the
majority of their peers who, taking the path of least resistance, ignored our work
out of hand and returned manuscripts with, ‘the subject matter is not in the
purview of the journal’. The reviewers also played a role in the successful
publication of LENR-related papers. A multitude of reviewers, many outside the
LENR field, had to put aside their biases and look objectively at our data. In
turn, the reviewers’ relentless concerns forced us to tenaciously address their
issues. Ultimately, the SSC-Pacific team published 21 refereed papers in seven
journals and a book chapter, spanning 19 years beginning in 1989. This paper is
a brief synopsis of those publications.

1. S. Szpak, P.A. Mosier-Boss, and J.J. Smith, “On the Behavior of Pd Deposited in the
Presence of Evolving Deuterium,” J. Electroanal. Chem., 302 (1991) 255-260

This was a preliminary note introducing the Pd/D co-deposition protocol as an alternative
experimental approach to initiate LENR. Temperature measurements using thermocouples
placed in the cathode and solution show that the cathode was hotter than the solution. This
indicates that the observed heat is not due to Joule heating. A ten fold increase in tritium
content in the solution was observed. Experiments were conducted with photographic film in
close proximity of the cathode. After development, the film showed a grid pattern due to the Ni
screen cathode and was attributable to the emission of soft X-rays.

2. S. Szpak, C.J. Gabriel, and R. J. Nowak, “Electrochemical Charging of Pd Rods,” J.
Electroanal. Chem., 309 (1991) 273-292

A model was developed to describe the electrochemical charging of palladium rods. This model
coupled the interfacial processes with the transport of interstitials in the electrode interior. It
was shown that boundary conditions arise from the solution of equations governing the
elementary adsorption-desorption and adsorption-absorption steps as well as the symmetry of
the electrode.
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3. S. Szpak, P.A. Mosier-Boss, S.R. Scharber, and J.J. Smith, “Charging of the Pd/nH System:
Role of the Interphase,” J. Electroanal. Chem., 337 (1992) 147-163.

Slow scan cyclic voltammetric studies of Au/Pd/nH were conducted to examine the dynamics
of transport of electrochemically deuterium/hydrogen across the electrode/electrolyte
interphase. It was found that a coupled, two-layer model of the interphase describes the
observed behavior as a function of scan rate and electrolyte composition. The effect of
chemisorbing species, thiourea, and pH on the transport across the interphase was also
investigated.

4. S. Szpak, P.A. Mosier-Boss, C.J. Gabriel, and J.J. Smith, “Absorption of Deuterium in
Palladium Rods: Model vs. Experiment,” J. Electroanal. Chem., 365 (1992) 275-286.

A model that incorporates variables such as electrochemical rate constants, bulk diffusion
coefficient, and charging current has been developed. Such a model can be used to predict the
overpotential, surface coverage, and bulk loading of the electrode during charging. The
computed time dependence of the bulk loading has been compared with published experimental
charging curves. Microscopic examination of a charging Pd cathode using Nomarski optics has
shown that, even within a single grain, there are preferred sites of absorption. In-situ XRD
measurements of the charging Pd cathode shows that deuterium preferentially enters the Pd
lattice through the 111 sites. With additional charging, a broadening and a shift to lower 2
angles was observed which suggested the presence of a supercharged layer.

5. S. Szpak, P.A. Mosier-Boss, R.D. Boss, and J.J. Smith, “Comments on the Analysis of
Tritium Content in Electrochemical Cells,” J. Electroanal. Chem., 373 (1994) 1-9.

The time dependence of tritium content of an open cell operating galvanostatically with
intermittent sampling has been derived and is given by the following expression:

where f is the tritium mass fraction, m is the mass of the electrolyte phase, r(i) denoted the rate

of change associated with the cell current, q is the rate at which tritium is added/removed, and s
is the isotopic separation factor. It was concluded that a complete mass balance between the
liquid and gas phases was necessary in order to determine that tritium was produced in the
Pd/D system.

6. S. Szpak, P.A. Mosier-Boss, and J.J. Smith, “Deuterium Uptake During Pd-D Codeposition,”
J. Electroanal. Chem., 379 (1994) 121-127.

Deuterium uptake during Pd-D co-deposition was examined using galvanostatic perturbation
techniques. The resultant potential relaxation curves exhibit four distinct potential-time
intervals where the relaxation process is controlled by the interaction between the transport of
deuterium from inside the lattice to the surface to form adsorbed deuterium and the reduction of
palladium from solution.
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7. S. Szpak, P.A. Mosier-Boss, S.R. Scharber, and J.J. Smith, “Cyclic Voltammetry of Pd + D
Codeposition,” J. Electroanal. Chem., 380 (1995) 1-6.

Processes associated with the Pd + D alloy codeposition were examined by cyclic voltammetry.
The dynamics of the interphase region are discussed.

8. S. Szpak, P.A. Mosier-Boss, and J.J. Smith, “On the Behavior of the Cathodically Polarized
Pd/D System: Search for Emanating Radiation,” Phys. Lett. A. 210 (1996) 382-390.

Pd/D co-deposition experiments were conducted inside lead caves while measuring gamma and
X-rays, as a function of time, using a HPGe detector with an Al window and a Si(Li) detector
with a Be window. The cathodically polarized Pd/D system was observed to emit X-rays with a
broad energy distribution and with an occasional emergence of recognizable peaks attributable
to the Pd Kα and Pt L lines. The emission of X-rays is sporadic and of limited duration.

9. S. Szpak and P.A. Mosier-Boss, “On the Behavior of the Cathodically Polarized Pd/D
System: A Response to Vigier’s Comments,” Phys. Lett. A. 221 (1996) 141-143.

Preliminary results of thermal imaging of the Pd/D cathode prepared using the co-deposition
technique are presented. Hot spots are observed that appear/disappear chaotically. With time
these hot spots merge into larger islands that exhibit oscillatory behavior. SEM images of a
Pd/D cathode that had melted during electrolysis are shown.

10. S. Szpak, P.A. Mosier-Boss, R.D. Boss, and J.J. Smith, “On the Behavior of the Pd/D
System: Evidence for Tritium Production,” Fus. Technol., 33 (1998) 38-51.

In these experiments, the D2 and O2 gases were recombined in a separate chamber. The tritium
content in the liquid and gas phases were measured daily using a liquid scintillation. The
measured data were analyzed using the mass balance expression that was derived earlier. It was
observed that tritium production occurred in bursts and sporadically. During a burst, the rate of
tritium production was estimated to be 103 to 104 atoms s-1. Tritium produced during prolonged
electrolysis was transported out of the electrode interior by two distinct paths. One path results
in enrichment of tritium in both the electrolyte and gas phases. The second results in
enhancement only in the gas phase.

11. S. Szpak and P.A. Mosier-Boss, “On the Release of from cathodically polarized
Palladium Electrodes,” Fus. Technol. 34 (1998) 273-278.

The release paths for tritium produced during electrochemical compression of deuterium in a
Pd lattice were examined. The results indicate that tritium production requires high D/Pd
atomic ratios. This requirement is met if there are no channels reaching the contact surface. The
electrogenerated tritium is distributed among the voids and bulk material. Gas evolution
promotes a continuous exchange between the atoms residing in the subsurface layer and
with those in the adsorbed state. Atoms in the adsorbed state exchange with the molecules of
the contacting electrolyte phase or gaseous phase, leading to two distinct transfer paths.

12. P.A. Mosier-Boss and S. Szpak, “The Pd/nH System: Transport Processes and Development
of Thermal Instabilities,” Nuovo Cimento Soc. Ital. Fis. A, 112 (1999) 577-587.

Hn
1

Hn
1



775

The surface temperature distribution of the cathode prepared by Pd/D co-deposition on a Ni
screen was measured using an infrared camera. It was observed that, unlike joule heating,
excess enthalpy generation occurs in the form of localized events in close proximity to the
contact surface. It was also observed that, the higher the electrolyte temperature, the more
frequent the events. In the limit, these events overlap to produce oscillating islands.

13. S. Szpak, P.A. Mosier-Boss, and M. H. Miles, “Calorimetry of the Pd + D Codeposition,”
Fus. Technol., 36 (1999) 234-241.

Calorimetric measurements indicate that the excess enthalpy generated in cells using cathodes
prepared by the co-deposition process is, on average, higher than that produced in cells using
solid Pd rods. Infrared imaging of the cathodes prepared by Pd/D co-deposition shows that the
heat sources are highly localized. The steepness of the temperature gradients indicate that the
heat sources are located in close proximity to the electrode-solution contact surface.

14. S. Szpak, P.A. Mosier-Boss, M. H. Miles, and M. Fleischmann, “Thermal Behavior of
Polarized Pd/D Electrodes Prepared by Co-deposition,” Thermochimica Acta, 410 (2004) 101-
107.

The thermal behavior of Pd/D electrodes, prepared by the co-deposition technique, was
examined using a Dewar-type electrochemical cell calorimeter. Results indicated that excess
enthalpy is generated during and after the completion of the co-deposition process. The rates of
excess enthalpy generated using the co-deposition technique were higher than those obtained
using Pd wires or other forms of Pd electrodes. Positive feedback and heat-after-death effects
were observed. The rates of excess power generation were found to increase with an increase in
both cell current and cell temperature.

15. S. Szpak, P.A. Mosier-Boss, C. Young, and F.E. Gordon, “The Effect of an External
Electric Field on Surface Morphology of Co-deposited Pd/D Films,” J. Electroanal. Chem.,
580 (2005) 284-290.

After plating out the Pd on a Au foil, the cell current was increased and an external electric
field was applied across the cell. The experiment was terminated after 48 h. The cell was
disassembled and the cathode was subjected to analysis using an SEM. In the absence of an
external electric field, the Pd deposit exhibits a cauliflower structure. After exposure to an
external electric field, significant changes in the morphology of the Pd/D deposit were observed.
Fractal features were observed as well as dendritic growths, rods, wires, and craters.
Considerable work is needed to account for the variety of shapes. The process of shape change
is driven by energy transferred from the electrostatic field and directed by the field.

16. S. Szpak, P.A. Mosier-Boss, C. Young, and F.E. Gordon, “Evidence of Nuclear Reactions
in the Pd Lattice,” Naturwissenschaften, 92 (2005) 394-397.

When a cathode prepared by Pd/D co-deposition is subjected to an external electrostatic field,
SEM analysis of the deposit shows discrete sites exhibiting molten-like features. Such features
require substantial energy expenditure in order to form. EDX analysis of these features shows
the presence of new elements (Al, Mg, Ca, Si, Zn,…) that could not be extracted from cell
components.
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17. S. Szpak, P.A. Mosier-Boss, and F.E. Gordon, “Further Evidence of Nuclear Reactions in
the Pd/D Lattice: Emission of Charged Particles,” Naturwissenschaften, 94 (2007) 511-514.

CR-39 is a solid state nuclear track detector that is used to detect energetic particles such as
alphas, protons, tritons, and helium-3. Pd/D co-deposition was done, in the presence of an
external electric or magnetic field, with the cathode in direct contact with a CR-39 detector.
Tracks on the CR-39 detector were observed where the cathode was in contact with the plastic
indicating that the source of the tracks is the cathode. The features of these tracks (optical
contrast, shape, and bright spot in the center of the pit) are consistent with those observed for
pits in CR-39 that are of a nuclear origin. The emission of the energetic particles is sporadic
and occurs in bursts.

18. P.A. Mosier-Boss, S. Szpak, F.E. Gordon, and L.P.G. Forsley, “Use of CR-39 in Pd/D Co-
deposition Experiments,” Eur. Phys. J. Appl. Phys., 40 (2007) 293-303.

A series of control experiments were conducted. It was shown that the tracks observed in CR-
39 detectors subjected to Pd/D co-deposition were not due to radioactive contamination of the
cell components. No tracks were observed when Cu was electrochemically plated on the
surface of the CR-39 detectors. This indicates that the pits cannot be attributed to chemical
attack of the surface of the CR-39 by either D2, O2, or Cl2 present in the electrolyte. Nor can the
pits be attributed to the metal dendrites piercing into the surface of the detectors. Additional
experiments showed that LiCl is not essential for the production of pits and that the density of
pits significantly decreases when light water is substituted for D2O. Quantitative analysis using
an automated scanner shows that there are three populations of tracks (0.1-0.5 μm, 0.9-4.0 μm, 
and 4.1-12 μm) and that the pits can be either perfectly circular or elliptical in shape. 

19. P.A. Mosier-Boss, S. Szpak, F.E. Gordon, and L.P.G. Forsley, “Detection of Energetic
Particles and Neutrons Emitted during Pd:D Co-deposition,” Low Energy Nuclear Reactions
Source Book, American Chemical Society , Chapter 14, pp 311-334. (2008).

Co-deposition procedures and control experiments specifically identified the conditions under
which nuclear particles were observed, and ruled out chemical means of mimicking nuclear
tracks. The nuclear tracks are quantitatively examined and are consistent with neutron knock-
ons. Triple tracks are presented as evidence of 12C(n,n´)3α indicative of DT fusion. 

20. P.A. Mosier-Boss, S. Szpak, F.E. Gordon, and L.P.G. Forsley, “Triple Tracks in CR-39 as
the Result of Pd/D Co-deposition: Evidence of Energetic Neutrons,” Naturwissenschaften, in
press. (2008).

Triple tracks have been observed in CR-39 detectors used in Pd/D co-deposition experiments.
Microscopic examination of the bottom of the triple track pit shows that the three lobes of the
track are splitting apart from a center point. The presence of three α-particle tracks outgoing 
from a single point is diagnostic of the 12C(n,n´)3α carbon break up reaction and is easily 
differentiated from other neutron interactions occurring within the CR-39 detector. The
presence of triple tracks suggests that DT reactions that produce ≥9.6 MeV neutrons are 
occurring inside the Pd lattice.
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21. P.A. Mosier-Boss, S. Szpak, F.E. Gordon, and L.P.G. Forsley, ““Use of CR-39 in Pd/D Co-
deposition Experiments: A Response to Kowalski,” Eur. Phys. J. Appl. Phys., 41 (2008) in
press.

Earlier we reported that the pits generated in CR-39 detectors during Pd/D co-deposition
experiments are consistent with those observed for pits that are of a nuclear origin. Recently,
that interpretation has been challenged. In this communication, additional experimental data
and further analysis of our earlier results are provided that support our original conclusions.



778

Preparata Prize Acceptance Speech
I. Dardik

Energetics Technologies
P.O.Box 3026

Omer Industrial Park
Omer, Israel

During ICCF-14, Irving Dardik was awarded the Preparata Medal for 2008. The
honor, named after the late Italian physicist Giuliano Preparata, is awarded at
ICCF conferences for contributions to progress in Condensed Matter Nuclear
Science.

Thank you Bill and Mike. I am honored to be this year’s recipient of the Preparata Prize and
thank the Committee for this recognition. Back in 1991 I applied for a low energy nuclear
reaction patent based on SuperWaves. The United States patent office shelved it along with all
the other applications that our community has submitted over the years. In 2001, one brave
man, Professor Herman Branover, stepped forward and listened to my predictions that
SuperWaves would make a difference in LENR results. Next in, was Ehud Greenspan who
stated that even if there was a 1% chance that I was right, he would listen. After hearing me
out, he upped that percentage to 50% and joined Dr. Branover, Alison Godfrey and me in a
meeting with the visionary Sidney Kimmel. In a bold and daring move, Sidney Kimmel
committed his personal resources towards funding a SuperWaves laboratory in Israel whose
mission was to use SuperWaves to produce usable energy.

I am grateful to Alison Godfrey for her extraordinary leadership in building Energetics
Technologies into what it is today…. to Shaul Lesin for taking the lead in establishing
Energetics in Israel and hiring a team of brilliant scientists in 2001 — 10 long years after my
first patent application in this field. Their work is impeccable and has justified Dr. Greenspan’s
participation. They have surpassed all expectations of what could be accomplished in a few
short years using SuperWaves.

By 2003, we presented some of our early results at ICCF 10 and had the honor of drawing the
attention of Mike McKubre. Mike’s scientific sophistication and leadership in the DARPA
replication projects with SRI, has been invaluable. I also want to thank Vittorio Violante of
ENEA and the extraordinary team at NRL.

I would like to acknowledge Dave Nagel and Mike Melich for organizing an extraordinary
conference, bringing in new faces and presenting the field in a cohesive and well developed
way.

As Llewellyn King pointed out in his Keynote Address, we are coming off of a summer of
skyrocketing energy costs. It is only August, and many in this country and around the world are
already in fear; wondering how they will afford to heat their homes this coming winter.
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With all the talk of possible alternatives to the finite fossil fuel reserves, our community is
not even part of the public dialogue. That… ladies and gentlemen… troubles me, because
history teaches us that the driving forces behind the great ages of advancement, were not only
people’s needs and hopes and dreams — but also our innate hunger for knowledge. Yet in the
midst of this traumatic awakening to our disastrous energy crisis, our research is missing from
the radar of public debate. Yet… even though our community operates virtually in the shadows
of science…. we are under attack and have been so for nearly two decades. But as we expend
positive and negative energy to protect ourselves… struggle financially for the survival of our
research….we remain at the core…. strong and resolute… because this is a community of
courageous people, committed against all odds.

The stakes are easily articulated. The survival of civilization is dependant upon finding a
safe, sustainable, and readily accesible solution to the energy crisis. It is our job to remain
focused on our goals and not take on a victim’s mentality, nor get caught up in the tempting
web of infighting. This quiet revolution is yielding results that are more and more reproducible.
We are on the verge of developing a technology that promises to rescue our future. And it is the
people in this room that are going to save the world.

But the revolution is now too quiet for our times. While they say we stand on the shoulders of
giants, history is ripe with pivotal moments when the greatest minds of an age, doubted
alternative thought, based on an assertion that all there was to be known… was known. Make
no mistake about it. We live in such a time.

The greatest advances in all of science have always come from ideas that were vilified. From
Galileo, to Columbus, to Semmelweis whose career was destroyed for having the audacity to
suggest that physicians should wash their hands before delivering a baby. We can proudly add
to that list Martin Fleischmann, Stanley Pons, and many of the people in this very room today.

It is nearly impossible to fathom… that despite living in the modern age where advances in
science, medicine and technology arrive at seemingly lightning speed, that there are those who
would argue that LENR is not even worth the effort of exploring. They would keep our work in
the shadows, and insist that the public must not know about our research… for fear that they…
the public… might join us in our commitment for a better tomorrow.

For those of us here tonight… I say… stay the course, because our time is now.
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Cold Fusion Country History Project

Xing Z. Li1, Jean-Paul Biberian2, Jacques Dufour3, M. Srinivasan4, F. Scaramuzzi5, J. Kasagi6,
Y. Iwamura7, Andrei Lipson8, Ivan Chernov9 and Yu. N. Bazhutov10

1 Dept. of Physics, Tsinghua University, Beijing, CHINA
2 Université d’Aix-Marseille, 163 Avenue de Luminy, 13288 Marseille cedex 9, France

3 CNAM - Laboratoire des sciences nucléaires - CC304A - 75141 Paris Cedex 03
4 Formerly of Bhaba Atomic Research Centre, Trombay, Mumbai

5 LNF/INFN, Frascati – Italy
6 Laboratory for Nuclear Science, Tohoku University, Japan

7 Advanced Technology Research Center, Mitsubishi Heavy Industries
8 A.N. Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of

Sciences, 119991 Moscow, Russia
9 Tomsk Polytechnic University, 634050 Tomsk, Russia

10 Institute of Terrestrial Magnetism, Ionosphere and Radiowave Propagation (RAS),
142092, Troitsk, Moscow region, Russia

The 20th Anniversary of the Fleischmann-Pons announcement was approaching as we
prepared for ICCF-14. An adjunct project was initiated to write histories of the research
activities on a country-by-country basis, preferably one in the language of the country and then
a translation into English. It had become clear that the normal historical record of the field’s
scientific development was in danger of being lost due to deaths, slow development of the field,
and general absence of institutional records. Thus was born the “cold fusion” Country History
Project. Our objective was to give each of the countries that have contributed significantly an
opportunity to record their research efforts and results in a form both accessible to native
speakers and to English speakers. Teams were assembled in China, France, India, Italy, Japan,
Russia, United Kingdom and the United States. At ICCF-14, six status reports were presented,
covering the history in China, France, India, Italy, Japan, and Russia. Selected text from these
presentations is shown below. There was no presentation at ICCF-14 Wednesday morning
session devoted to the Country Histories of the USA and UK history work.

It is our intention that these reports, when finished, will be brought together as a set and made
widely available in English. An editorial board of scientists not involved in the field has been
assembled to review the final manuscripts. The United Kingdom “book” will likely be an
expansion of the history of the UK’s Atomic Energy Research Establishment, Harwell. The
USA history is directed at extracting and making available research work that has hitherto not
been available, particularly in an organized form, from US government laboratories.

The science of nuclear physics and nuclear fission developed in the politically charged 1930s
and moved to national importance with Roosevelt’s receipt of Einstein’s 2 August 1939
warning letter of the potential of nuclear energy. The Manhattan Project pushed into existence
the atomic bomb and the foundations of nuclear power generation leaving behind the
development of a basic scientific understanding of what is a very difficult many-body problem.
The physical models we have used for about 70 years still retain much of the flavor of the



781

needs of an engineering project. Their scientific limitations are discussed by Norman Cook in
his book, Models of Nuclear Physics, Springer 2006. Cook’s book and presentation at ICCF-14
provide a useful context for gaining a deeper understanding the history of development of the
Fleischmann-Pons Effect and why it was controversial. We hope that, when finished, this
Country History project will offer a better appreciation of what will be required to deal with
some of the most fundamental problems of the physical sciences.

1. “Condensed Matter Nuclear Science” Research in China
Presentation Title: Normal Temperature Nuclear Fusion
Xing Z. Li, Department of Physics, Tsinghua University, Beijing
Presentation at ICCF-14, Washington D.C., Aug.13 2008,

Abstract. Five features of “Condensed Matter Nuclear Science” research in China are
addressed. Five important meetings are described from the beginning to April of 2008. Twenty
institutions are listed with their principle investigators, research staffs, and main research
subjects. Twenty-nine articles are cited for reference.

Nomenclature. Cold fusion is referred to as “normal temperature nuclear fusion” in China. It
was given this name by Academician, Qian Xue Sen. In 2002, during ICCF-9, International
Advisory Committee decided on a new name, Condensed Matter Nuclear Science (CMNS), in
order to show the progress of the normal temperature nuclear fusion which had initiated this
research field. This article mainly discusses the history; hence, it still adopts the name of
normal temperature nuclear fusion (or in some cases “cold fusion”).

Introduction. Normal temperature nuclear fusion has been conducted for 19 years in China.
When reviewing it, five aspects of the research stand out:

1. National policy has always kept an expectation established at the beginning.
2. A group of top scientists have continued to support this research, even though it

appears to violate common-sense.
3. International collaboration has been an important aspect from beginning until the

present day.
4. Chinese researchers have attempted to develop the basic research independently with

our own approaches.
5. Hot fusion institutions have kept abreast of development in normal temperature nuclear

fusion, and have even given a hand occasionally.
Over 20 institutions have continued research into these phenomena since the 1989 FPE
announcement. The map below provides an indication of the work as of August 2008.
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2. “Condensed Matter Nuclear Science” Research in France

History of Cold Fusion France

Jean-Paul Biberian, Faculté des Sciences de Luminy, Marseille
Jacques Dufour, CNAM, Paris

The players. These scientists and engineers have entered the field at one time or another :
The CEA Grenoble (Georges Lonchampt).
CNAM (Jacques Dufour).
CNAM (Pierre Clauzon).
The EDF (Electricité de France).
Université Aix-Marseille (Jean-Paul Biberian).
IMRA Sophia Antipolis (Stan Pons and Martin Fleischman).
Independent researcher (Jean-Louis Naudin).
Independent researcher (Fabrice David).
Fondation Louis de Broglie (Georges Lochak and Henri Lehn).

The future. Unless something striking happens soon, the field will disappear in France.
Today’s active researchers”

CNAM (Pierre Clauzon, already retired).
Université Aix-Marseille (Jean-Paul Biberian, will retire in three years).
Fondation Louis de Broglie(George Lochak and Henri Lehn, already retired).
Fabrice David.
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Research interest among younger scientist can be found at CNAM where Jacques Dufour has a
team of two young scientists actively testing a novel working hypothesis (picochemistry) that
based on a current center of interest in main stream physics (long range weak Yukawa potential
in the Standard Model Extension).

3. “Condensed Matter Nuclear Science” Research in India
History of Cold Fusion Research in India
M. Srinivasan, Formerly of Bhaba Atomic Research Centre, Trombay, Mumbai

Phases of CF Research in India

Phase i : 1989 to 1991 (ICCF 1) - Most productive era!
Phase ii : 1992 to 1995 (ICCF 3,4,5) - Post Iyengar period
Phase iii : 1996 to 2007 (12 years) India totally blanked out!
Phase iv : 2008 Revival - Following NIAS meeting of 9th January 2008

Overview of BARC (1989-90)

 BARC has > 50 Divisions & 3000 Scientists!
 12 teams (~ 50 scientists) took up challenge
 To verify “nuclear origin” of phenomenon
 Looked for neutrons & Tritium
 First neutrons detected on 21st April 1989!
 Within a year all teams reported both n & T
 Among first groups to find branching ratio anomaly namely (n/T) = ~ 1E (-7)
 ICENES Karlsruhe 4th to 7th July 1989
 Report BARC 1500 (Aug ‘89) (Historical role!)
 ICCF 1 & Fusion Technology paper of Aug ‘90 with 50 authors summarize work of 89-

90!

4. “Condensed Matter Nuclear Science” Research in Italy
Cold Fusion in Italy
Francesco Scaramuzzi , LNF/INFN, Frascati – Italy

Introduction. I will discuss a book produced by ENEA: “The history of Cold Fusion in Italy”.
I will touch the following issues:

- The book
- The beginning of the Italian History of CF
- The years of maximum effort
- The decay
- Comments

Comments.
- cold fusion is a reality
- it is prominently a scientific problem, very much interesting at that
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need for a coordinated effort in material science
- it is important to convince the scientific world of the validity of the issue, through neat,
reproducible experiments
- it is still too early to put the accent on the possible applicative fall-outs, even though
everyone hopes in them, in particular in the field of energy production.

5. “Condensed Matter Nuclear Science” Research in Japan
Country History of Japanese Work on Cold Fusion - Toward further development of
Condensed Matter Nuclear Science
J. Kasagi
Laboratory of Nuclear Science, Tohoku University
Y. Iwamura
Advanced Technology Research Center, MHI

Abstract. We briefly summarize the history of Japanese work on cold fusion after 1989. Since
the excellent work performed by Prof. Arata are introduced and discussed in the special session,
we try to summarize other works in Japan. The history can be divided into three periods: the 1st
period is from the announcement by Fleischmann and Pons to the ICCF3 Nagoya Conference
(1989 - 1993); the 2nd period is during the New Hydrogen Energy (NHE) Project (1994 –
1998); and the 3rd after the NHE project (1999 – present). Characteristics of each period and
the present situation are presented.

Introduction. In the 19 years following the announcement of Professors Martin Fleischmann
and Stanley Pons, much work on the cold fusion has been carried out in Japan as well as in
other countries. The organizers of this conference have asked us to edit a document on “cold
fusion” research in Japan. Many official reports for various projects, proceedings of domestic
meetings on cold fusion and research papers describe the progress of this research in Japan.
Thus, we thought that it is worthwhile to collect and summarize such records as an interim
report in the cold fusion research. Since the excellent works performed by Prof. Arata were
introduced and fully discussed in the special session of ICCF14, we have tried to summarize
other work based on many official reports in Japan.
The history of cold fusion research in Japan can be divided into three periods: the 1st period is
from the announcement of F-P to the ICCF3 Nagoya Conference (1989 - 1993), the 2nd period
is during the New Hydrogen Energy (NHE) Project (1994 – 1998), and the 3rd after the NHE
project (1999 – present), as schematically shown in Fig. 1. We will show background and
characteristics of each period, as well as notable research.

6. “Condensed Matter Nuclear Science” Research in Russia (Former Soviet
Union)
Status of Russian Research on Low Energy Nuclear Reactions in Non-Equilibrium Condensed
Matter, Based on Publications in Peer-Reviewed Journals
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Andrei G. Lipson, A.N. Frumkin Institute of Physical Chemistry and Electrochemistry, Russian
Academy of Sciences, Moscow 199915, Russia
Ivan P. Chernov Tomsk Polytechnic University, Tomsk, 634050 Russia

Why peer-reviewed journals only in this history? LENR (CMNS) is a new science and still
shows poor reproducibility. In some sense it is a “Proto-science” (the definition of L.
Kowalski). In some cases poor experimental equipment, reflecting a lack of support, and
overselling of results, while seeking support, leads to a lack of credibility. Lacking independent
confirmations one may not believe in each result! It is hard to distinguish the grains of truth
from the stream of informational noise. Because peer reviewed journals take on the
responsibility for the integrity of their publications they use respected scientists in the field of
journal, although also this introduces biases. Thus, we have chosen only per-reviewed papers
that have been filtered by editors and published.

Wide Survey of FSU/Russian CMNS Related Activities. CMNS Russian activity, based on
local conference and seminar proceedings has been prepared by Yuri Bazhutov and will be
described in the so-labeled section below.

What we are studying. Under LENR or CMNS we study specific nuclear processes at very
low kinetic energy of projectile nuclei (say, kT< Elab < 1 KeV) that originate and are enhanced
by strictly non-equilibrium condensed matter/crystalline lattice environment. These
peculiarities make LENR (and nuclear cross-sections) drastically distinctive from the nuclear
reactions taking place in vacuum/plasma collision. Broadly, the LENR/CMNS effects include
nuclear, calorimetric, electrochemical, condensed matter physics, material science and other
accompanying aspects. This field is inherently an interdisciplinary research area.

Some dates and statistics. After the discovery of deuterium’s role in Pd cathodes during
electrolysis (by Fleischmann and Ponce in 1989) many groups in the former USSR started their
works on LENR. In April 1989 to support this research at the national government level a
special Council on Cold Fusion was been created in the USSR Academy of Sciences, headed
by a vice-president of Academy Academician V. Nefedov.
The First All-Union Conference on Cold Fusion at JINR-Dubna was in March 1991. Fourteen
local Russian conferences and a monthly Cold Fusion seminar at PF University, Moscow (N.
Samsonenko) were organized. More than 250 Russian papers have appeared in peer-reviewed
journals since1989. Since 1993 there has been no central government funding of research in
this area. FSU scientist suffer from the Bill Collis Vicious Cycle: “insufficient funding leads to
poor research, poor research leads to poor papers, poor papers lead to insufficient funding”.

Critical Russian Contributions in LENR/CMNS Research - Prior to 1989 F-P
announcement.
First experimental study and development of the microscopic acceleration model: Fractofusion
on fracture of deuterated dielectrics: LiD and heavy ice crystals (Klyuev VA, Lipson AG et al.,
Sov. Tech. Phys. Lett 12, 551 (1986), Deryaguin BV, Klyuev VA, Lipson AG, Toporov YuP,
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Colloid J. USSR 48, 8(1986)). In 1989 TiDx fracture neutrons: [B.V. Deryaguin et al, Nature,
341, 492, (1989)].
Theoretical considerations re the effects on the Coulomb barrier that is reduced in deuterated
crystals, depending on crystallographic direction, resulting in excess energy production using
deuteron beam and crystalline target: V.V. Vysotsky and R.N. Kuzmin, Sov.Tech. Phys. Lett., 7,
981 (1983)

Summary of FSU/Russian Contributions. Russian research in LENR has made a critical,
important contribution. The significant areas include, but are not limited by fracto-fusion,
nuclear emissions during acoustic cavitation, glow discharge effects (isotopic shifts and soft X-
ray emission first observed by Karabut et al), energetic alpha particle emissions, and the first
application of CR-39 and so on. These contributions are pioneering results and have affected
international development of CMNS. Despite the clear evidence and high value of Russian
achievements, much of Russian researcher work has been ignored and have not been cited (in
time) in international publications on LENR and other related fields. Particular examples –
fractofusion, cavitation fusion, neutrons emitted from ferroelectrics and so on. It is worth
noting that main stream Soviet/Russian physics journals (JETP, JETP Lett., Tech. Phys. Tech.
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Phys, Lett.) have been translated to English (almost simultaneously with the Russian version)
by American Institute of Physics. So the failure to make reference to this literature cannot be
attributed being only available in Russian.

Conclusion. The research product of Russian groups answer affirmatively that the question
existence of LENR. Numerous peer reviewed and published Russian papers on CMNS in non-
equilibrium condensed matter repeatedly show the occurrence of LENR in the form of excess
heat and/or nuclear emissions. The main problems of Russian LENR studies is a total lack of
institutional funding resulting in fragmentation of the research conducted and the low
circulation and readership of the results in international community. Much has been done so it
is clear that concentration of Russian efforts and international cooperation are highly
productive. The result of concentrated efforts and international collaboration finally put in
place a complete CMNS experiments where simultaneous detection of excess heat, atomic 4He,
3T, charged particles (DD-products +energetic alphas), neutron emission is accomplished.

7. Role of Russian Scientists in Cold Nuclear Transmutation – Condensed
Matter Nuclear Science (According to Conferences Proceedings, 1991-2007)
Yu.N. Bazhutov
Institute of Terrestrial Magnetism, Ionosphere and Radiowave Propagation (RAS),
142092, Troitsk, Moscow region, Russia, bazhutov@izmiran.ru

Abstract. The following presents a statistical analysis of Russian scientists’ personal research
(together with Ukrainian scientists) according to their publications in different Cold Fusion
Conferences Proceedings. Among these conferences are following: 11 International
Conferences on Cold Fusion (3-13 ICCF, 1992-2007); Soviet Union Conference on Cold
Nuclear Fusion (JINR-MSU, 1991); Soviet Union Seminar on Chemistry & Technology of
Hydrogen (Zarechnyi, 1991); 2-d International Symposium on Cold Fusion (Minsk, 1994); all
14 Russian Conferences on Cold Nuclear Transmutation (Abrau-Dyurso, Sochi, Dagomys,
1993-2006). An analysis is presented of the total number of Russian scientists publications in
International Conferences on Cold Fusion compared to publications from other countries. This
analysis has demonstrated the considerable contribution of Russian Scientific Community to
the World Cold Fusion researches.

Introduction. Immediately after M. Fleishmann and S. Pons's press conference on 23 March
1989 and in the scientific press [1,2] about discovery of the new phenomenon named by them
as Cold Nuclear Fusion the Russian scientists have actively joined in its research. Moreover,
some researches have been lead even earlier [3,4,5], but they were not considered by authors,
as essentially new direction in a science (mechanoemission by Deryagin B.V. – see references
in the first part of this Russian/FSU history above), or simply were not published in scientific
journals since they were seen as contradicting orthodox theoretical representations
(Yaroslavskiy M.A). Therefore already at the First (and last) Soviet Union Conference on Cold
Fusion (SUC CF) there were presented almost a hundred reports from nearby fifty various
scientific groups. It was the first large congress of Russian (and also Ukrainian and Belarus)
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scientists on the problem of Cold Fusion which took place in the 2nd anniversary of
announcement of this phenomenon (22-23 March, 1991) in the Joint Institute of Nuclear
Researches in Dubna and also has come to the end in the Moscow State University.
Unfortunately, all papers of this meeting have not been published, only Abstracts SUC CF [6]
has been published.

Synopsis of Some Aspects of Russian Meetings. The very first RCCNT (more exact then it
still referred to RCCNF) took place in September 1993 in Abrau-Dyurso near Novorossiysk on
the basis of sport camp of the Rostov State University. It became long-awaited heiress to All-
Union Conference on Cold Nuclear Fusion (1991). On it outstanding representatives CNT from
abroad have been presented more than 30 Russian and Ukrainian scientists. At the second
RCCNT (RCCFNT-2) that took place on September, 19-23rd at the rest house of the Moscow
State University in Sochi, 39 scientists from Russia, Ukraine and Belarus and also from the far
abroad. All the subsequent RCCNT (3-14, 1995-2006) were held at the resort “Olympic-
Dagomys” (Sochi). At each were present about 30 Russian (and also Ukrainian, Kazakh and
Belarus) scientists with their reports and some from a few scientists of the far abroad.

Views of the status of Russian Research and Organiation. The main “Gold” stock of high
scientific physical and chemical potential in researches of Cold Fusion in Russia is its highly
professional researchers managing in the hardest conditions of full disorder of a science in the
country to spend solid theoretical and experimental researches, recognized by all international
community as priority. From our statistics it is apparent, that many Russian scientists, not
having a financial opportunity to attend ICCF, actively enough work and are published in
RCCNT Proceedings. Such professional activity of the Russian scientists allows hoping,
eventually, will find recognition and support and will allow the Russian science to bring still
the defining contribution to World scientific and technical progress.

Activity of the Russian scientific community on a problem Cold Nuclear Transmutation is
coordinated by its Interdepartmental Coordination Committee (ICC), created at vice-president
of the Russian Academy of Sciences, academician Nefyodov O.M. in 1995. Its chairmen in
different years were academicians Kolotyrkin Ya.M., Baraboshkin A.N. and Kazarinov V.Е. In 
2004 in connection with reorganization of Presidium of the Russian Academy of Science, ICC
also has been reorganized in the structure and has been registered at the Russian Physical
Society by its president, Professor Mikhailin V.V. The academician of the Russian Academy of
Nature Sciences Rukhadze A.A. is now the new ICC CNT Chairman.
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