Energy Overview From NREL

This document has no connection to cold fusion, but it is valuable public domain information, it is no longer in print, and it does not appear to be available elsewhere on the Internet.

Pages 2 – 16 are from the U.S. DoE Office of Conservation and Renewable Energy (NREL), *Hydrogen Program Plan--FY 1993--FY 1997*, June 1992, Appendixes A and C.

Page 17 shows a graph published by the Lawrence Livermore National Laboratory in 2001. The graph shows that most energy is lost as "rejected energy" (waste heat), especially in Electricity generation (70% waste) and Transportation (80% waste). Better technology would greatly reduce this waste. Most generators convert only 33% of the heat from burning coal or gas into electricity; advanced generators convert 40%. Most automobiles convert only 15% of the heat from gasoline into useful vehicle propulsion; hybrid and electric automobiles convert 30% or more. This graph is based on the DoE Energy Information Administration Annual Energy Review. This review is an excellent, comprehensive source of online information. See:

http://www.eia.doe.gov/emeu/aer/contents.html

Exhibit A.2 Transportation Current Technologies (Continued)

AVERAGED FOSSIL FUELS/ELECTRICITY/BATTERY

Unit Cost (\$/kW):

1500

300*

Total Cost (\$/kW delivered): Total Emissions (g/kWh delivered):

3,240 ed): CO₂: 1,505,

NO : 4.2

4.2 SO₂: 11.3

NATURAL GAS/ICE

Unit Cost (\$/kW):

00 M al al al ::

Total Cost (\$/kW delivered): Total Emissions (g/kWh delivered):

530

CO₂: 1300, NO₂: 4.0

PHOTOVOLTAICS/BATTERY/ELECTRICITY

300*

Unit Cost (\$/kW):

5000

120

Total Cost (\$/kW delivered):

27,512

Total Emissions (g/kWh delivered):

^{*} These devices are rated on input power; all others are sized on output power levels.

Exhibit A.4 Utility Current Technologies

AVERAGED FOSSIL FUELS/ELECTRICITY

Total Cost (\$/kW delivered): 2,160

Total Emissions (g/kWh delivered): CO₂: 1,003, NO₂: 2.8, SO₂: 7.5

AVERAGED FOSSIL FUELS/BATTERY/ELECTRICITY

(included)

300*

Total Cost (\$/kW delivered): 3,216

Total Emissions (g/kWh delivered): CO₂: 1,505, NO₂: 4.2, SO₂: 11.3

120

- * These devices are rated on input power; all others are sized on output power levels.
- ** Other forms of electric storage (i.e., pumped storage) operate at similar efficiencies.

PHOTOVOLTAICS/BATTERY/ELECTRICITY

Unit Cost (\$/kW):

2500 120 300*

Total Cost (\$/kW delivered): Total Emissions (g/kWh delivered):

9,508

WIND/DC ELECTRICITY

Unit Cost (\$/kW):

1100

120 300*

Total Cost (\$/kW delivered): Total Emissions (g/kWh delivered):

5,052

^{*} These devices are rated on input power; all others are sized on output power levels.

^{**} Other forms of electric storage (i.e. pumped storage) operate at similar efficiencies.

Exhibit A.5 Utility Advanced Technologies

AVERAGED FOSSIL FUELS/ELECTRICITY

Unit Cost (\$/kW):

1200 300*

Total Cost (\$/kW delivered): 1,650

Total Emissions (g/kWh delivered): CO₂: 702, NO_x: 0.56, SO₂: 0.24

AVERAGED FOSSIL FUELS/BATTERY/DC ELECTRICITY

Unit Cost (\$/kW):

1200 300^{*} 80

Total Cost (\$/kW delivered): 2,184

Total Emissions (g/kWh delivered): CO₂: 893, NO₃: 0.71, SO₃: 0.31

AVERAGED FOSSIL FUELS/ELECTRICITY/HYDROGEN

Total Cost (\$/kW delivered): 3,530

Total Emissions (g/kWh delivered): CO₂: 1,276 NO₂: 1.02 SO₃: 0.44

AVERAGED FOSSIL FUELS/HYDROGEN/DC ELECTRICITY Using Utility Waste Heat

Unit Cost (\$/kW):

1200 250* 50

50*

Total Cost (\$/kW delivered):

4,642

Total Emissions (g/kWh delivered): CO₂: 1,914, NO₂: 1.53, SO₂: 0.66

(1) Storage efficiency increased from 0.75 to 0.95 due to utilization of power plant waste heat for hydride discharge.

COAL GASIFICATION/HYDROGEN/DC ELECTRICITY

Total Cost (\$/kW delivered): 2,830

Total Emissions (g/kWh delivered):

CO₂: 1,305, NO₂: 0.96, SO₂: 0.73

NATURAL GAS/HYDROGEN/DC ELECTRICITY

Total Emissions (g/kWh delivered): CO₂: 358, NO₂: 0.13

Unit Cost (\$/kW):

SOLAR

(U-18)

BIOMASS

300*

Transmission

0.95

Motor Drive

0.95

FACTORY

POWER

AC ELEC

DELIVERED

Total Cost (\$/kW delivered): Total Emissions (g/kWh delivered): CO₂: 0**

Photosynthesis

1,320

WIND/DC ELECTRICITY

AC ELEC

GRID

Unit Cost (\$/kW):

850

300*

Total Cost (\$/kW delivered):

3,292

Total Emissions (g/kWh delivered):

^{**} CO₂ produced during H₂ and ethanol production is reabsorbed by subsequent biomass crops.

APPENDIX C: TECHNOLOGY ASSUMPTIONS TABLE C-1

		Current (1990)		Advanced (2020)	
Ref. No.	Technology	Efficiency (%)	Cap. Cost (\$/kW)	Efficiency (%)	Cap. Cost (\$/kW)
1	Central Baseload Fossil Plant	36	1,500	42	1,200
2	Electricity Transmission (500 miles)	92	300	95	300
3	Electric Motor Drive	90	100	95	100
4	Electrolysis	65	1,000	75	250
5	Hydrogen Storage (5 hours)	65	100	75	50
6	Natural Gas Pipeline (500 miles)	95	50	97	50
7	Hydrogen Pipeline (500 miles)	95	50	97	50
8	Fuel Cell	40	2,500	50	300
9	Battery Storage (5 hours)	70	120	80	80
10	Photovoltaics	15	5,000	25	2,500
11	Photoconversion	_	_	25	2,500
12	I.C. Engine (Fed. Urban Dr. Cycle)	15	50	19	40
13	Vehicle Power Train	85	10	90	10
14	Refinery	85	1000	90	1000
15	Gas Furnace	90	_	_	_
16	Industrial Boiler	70		_	_
17	Combined Cycle- Baseload Coal Plant	39	_	_	_
18	Combustion Turbine	25	_	_	_
19	Steam Reforming (natural gas)	68			
20	Biomass Conversion (ethanol)			60	1000
21	Biomass Conversion (hydrogen)	_	_	60	1000
22	Coal Gasification	55	1,200	65	900

1. Central Baseload Fossil Plant

"Electricity Supply: Supporting Analysis for the *National Energy Strategy*" *SR/NES/90-03*, DOE/EIA, 1991 EPRI, *Technical Assessment Guide* (*TAG*), Vol. 1,1986

2. Transmission

Pacific Gas and Electric Co., "Hydrogen and Electricity as Carriersof Solar and Wind Energy for the 1990s and Beyond,"G.W. Braun, A. Suchard, J. Martin, 1990

3. Motor Drive

Lawrence Berkeley Laboratory, "Technology Assessment: Adjustable-Speed Motors and Motor Drives," U.S. DOE, 1988 EPRI, Technical Brief, "Efficient Electric Motors and Drives," 1987

4. Electrolysis

PG&E, 1990 (Ibid.)

"The Hydrogen Technology Assessment, Opportunities for Industry and Research, Phase I," National Hydrogen Association

"Economic Assessment of Advanced Electrolytic Hydrogen Production," S. Dutta, D. Block, R. *PortInternational Journal of Hydrogen Energy*, Vol. 15, No. 6, pp. 387-395,1990

"Modern and Prospective Technologies for Hydrogen Production from Fossil Fuels," M. Steinberg, H. Cheng, *International Journal of Hydrogen Energy*, Vol. 14, No. 11, pp. 797-820, 1989

5. Hydrogen Storage

National Hydrogen Association, 1991 (Ibid.)

PG&E, 1990 (Ibid.)

(See references in Appendix B)

6. & 7. Hydrogen Pipeline

PG&E, 1990 (Ibid.)

"Energy Options," J.M. Bockris, Ch. 10, J.Wiley, 1980

Hydrogen: Its Technology and Implications, F. Edeskuty, K. Williamson, CRC Press, 1977

(The long distance hydrogen pipeline data in this reference is based on calculations and projections, not actual transmission data)

8. Fuel Cell PG&E, 1990 (Ibid.) DOE/EIA, 1991 (Ibid.) EPRI, 1986 (Ibid.)

PG&E, "Scenario Evaluation and Research Choice (SEARCH) Study, Phase I," 1988

9. Battery Storage PG&E, 1990 (Ibid.) PG&E, 1988 (Ibid.) EPRI, 1986 (Ibid.)

"Electric Vehicles; Performance, Life-Cycle Costs, Emissions and Recharging Requirements," M. Deluchi, Q. Wang, D. Sperling, *Transportation Research*, Vol. 23A, No. 3, pp. 255-278,1989

10. Photovoltaics

"The Potential of Renewable Energy: An Intel-laboratory White Paper," U.S. DOE, 1990 "Photovoltaics Program Plan FY 1991-1995," U.S. DOE, 1991

11. Photoconversion U.S. DOE, 1990 (Ibid.)

Personal communication to W. Hoagland, NREL, June 1991

12. I.C. Engine

Jet Propulsion Laboratory (JPL), "Advanced Vehicle Systems Assessment," Vol 1: Executive Summary, K. Hardy, 1985 "Hydrogen Vehicles: An Evaluation of Fuel Storage, Performance, Safety, Environmental Impacts, and Costs," M. DeLuchi, *International Journal of Hydrogen Energy*, Vol. 14, No. 2, pp. 81 -130,1989

13. Vehicle Power Train

JPL, 1985 (Ibid.)

14. Refinery

DOE Staff Communication, 1991

15. Gas Furnace

EPRI TAG, End-Use, 1987

16. Industrial Boiler

EPRI TAG, End-Use, 1987

17. Combined Cycle Baseload Coal Plant

Electricity Supply, WES, DOE/EIA, 1991 (Ibid)

18. Combustion Turbine

EPRITAG, 1986 (Ibid)

19. Steam Reforming

International Journal of Hydrogen Energy, Vol 14, No. 11,1989 (Ibid)

20. & 21. Biomass Conversion

International Journal of Hydrogen Energy, 1989 (Ibid)

22. Coal Gasification

International Journal of Hydrogen Energy, 1989 (Ibid)

U.S. Energy Flow Trends – 2000 Net Primary Resource Consumption 98.5 Quads

Source: Production and end-use data from Energy Information Administration, *Annual Energy Review 2000* *Net fossil-fuel electrical imports

December 2001 Lawrence Livermore National Laboratory

^{**}Biomass/other includes wood and waste, geothermal, solar, and wind.