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Neutron emission from ferroelectric crystals
during transition through Curie point

 B. Naranjo et al ( Nature, 434, 1115-
1117, (2005) presented a desktop
neutron generator based on deuteron
beam ionized and accelerated up to 100
keV by electric field arising from the
spontaneous polarization of pyroelectric
LiTaO3 crystal at a low pressure
deuterium gas adsorption.
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Fracto-emission

 The fracto-fusion caused by a weak
neutron emission has been observed
during the fracture of deuterated
dielectric crystals (i.e. induced
polarization), where cracks serve as
tiny accelerators (B.V. Deryaguin, et
al, Nature 341, 492 (1989).
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Neutron emission in deuterated
ferroelectrics KD2PO4 (DKDP) during
passing through Curie point

 The reason of search for neutron emission
in deuterated ferroelectrics was a strongest
electric field in the lattice (E ~ 1010 V/m)
that arises in the course of spontaneous
polarization during heating or cooling of
KD2PO4 (DKDP) single crystal through the
Curie point Tc =222 K.
A.G. Lipson, et al, JETP, 76(6), 1070-1076
(1993).
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Experimental
 Transitions through Curie point Tc =220 K by

heating-cooling cycle using LN2 cryostate. Control of
transition with Thermally stimulated depolarization
(TSD).

 Neutron measurements with BF3 – 7 counter
proportional neutron detector.

 Tritium measurements with liquid scintillator
technique with dissolving of DKDP crystals in H2O.

 Recently done: 3.0 MeV proton measurement with
CR-39 (open and filtered with Al foils) attached to
DKDP plates cycled through Curie point.
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Neutron Emission: Amplitude Spectra
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Neutron Emission vs. Spontaneous
polarization (TSD)
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Parameters of Neutron emission in
KH2PO4 and KD2PO4 single crystals

0.75±0.150.025±0.004221.0±0.5;
222.0±0.5

KD2PO4
(m=0.8 g)

0.61±0.160.020±0.004219-223KD2PO4
(m=0.8 g)

0.40±0.130.012±0.004219-223KD2PO4
(m=0.5 g)

-0.001±0.005210-215KD2PO4
(m=0.8 g)

-0.001±0.005219-223KH2PO4
(m=0.8 g)

-0.000±0.005121-125KH2PO4
(m=0.8 g)

Neutron emission Φn, n/sForeground-Background,
cps

Temperature interval: ΔT,
K

Crystal
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3 MeV Proton Emission: 40 transitions through Curie
point in a row with attached open and filtered CR-39
detectors: The detected track diameters are consistent
with 3 MeV proton energy losses in Al foils
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Tritium concentration measurements by liquid
scintillator technique (in units of 109 T-atoms
per gram of DKDP)

23.4 ± 1.89.2 ± 1.58.3 ± 1.35.9 ± 1.1*100 cycles
through Tc

5.0±0.25.0 ± 0.2control

TotalCell atmospherCell glassDKDP crystal# sample

*The DKDP sample m = 0.5 g was subjected to 100 heating –
cooling cycles in isolated glass cell at atmospheric pressure.
Accordingly to this measurement the yield of tritium was found to
be Yt = (1.82 ±0.25)x108 [t/transition].
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Neutron and proton emission Yields per
transition through Curie point

 Neutron yield from d(d, n)He3 reaction was found to be Yn = 20
± 4 [n/transition-g] in the range of 219-223 K.

 Branching ratio between neutrons and tritium should be: Yn/Yt ~
10-7.

 Recently measured (with CR-39) 3.0 MeV proton yield from
d(d,p)t reaction, taking into account efficiency of CR-39
detection of 3.0 MeV protons (εp = 0.076) at <Np> = 0.5 ± 0.1
count/transition was found to be

Yp = 12±3 [p/transition-g]
No significant difference between DD-reaction channels when 3.0

MeV proton and neutron yields are compared.
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Ways to enhance neutron emission
from DKDP

 Use double crystal DKDP system (cathode and
anode) in deuterium atmosphere p~ 10 mtor (Double
ferroelectric system gives 200 keV deuterons: J. A.
Geuther and Y. Danon, J. Appl. Phys., 97, 074109
(2005))

 Simultaneous transition through Curie Point (Tc=220
K) of both crystals

 To keep constant positive electric charge at the
cathode surface, the back face of the DKDP cathode
is grounded via an ohmic contact
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Deuteron energy estimate

 During simultaneous transition through Curie
point both cathode and anode are triggered
to a spontaneous polarization state (Ps ~
5.0x10-6 C/cm2, electric field E ~ 3 x 107

V/cm).
 The deuterons from the anode are

accelerated in this field in the interelectrode
gap toward the DKDP cathode and bombard
it with an energy Ed ≥100 keV.
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Neutron Yield estimation

 The electron current density is of order: Je~
1.0 A/cm2. Assuming a secondary ion
emission coefficient ~ 1 and taking into
account the possibility of direct deuteron field
emission from the DKDP anode tip, the D+
current density would be the same order of
magnitude as the electron emission one.
Thus, at Ed ~ 100 keV and Jd ~ 1 A/cm2, the
neutron yield is 105-106 n/s in 4ster.
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Sketch of 2.45 MeV neutron source based on a high
voltage discharge between DKDP cathode and anode
during their passage through Curie point.



ICCF-12, 11/27-12/03, 2005,
Yokohama 16

Advantage and applications

 Advantages include the very compact small
size and elimination of a massive power
supply, making this truly a portable source.

 This monoenergetic tabletop neutron source
with moderate neutron yield could be used
for airport security checking, geological and
bio-medical purposes.
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Conclusions I
 Generation of DD-reaction resulting in neutron and 3 meV

proton emissions in DKDP ferroelectric crystal during passage
through Curie point has been established.

 It was shown that neutron and proton channels in DKDP crystal
give comparable nuclear yields. Large amount of tritium
production (~ 2x108 T3 at./transition) cannot be referred to
usual DD-reaction.

 The factor of spatial separation of deuteron source and target in
deuterated ferroelectrics can be used to obtain large neutron
yield during transition of these ferroelectrics to spontaneously
polarized state.
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Conclusions II
 New type of neutron source based on electric discharge

between two ferroelectric KD2PO4 (DKDP) crystals during their
polarization reversal at T = 220 K in D2/T2 atmosphere is
proposed. No high voltage power supply. Small size. Projected
intensity Yn = 106(D2)-108 (T2) n/s.

 Potential applications include Homeland security and oil
exploration as a bore hole source.
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 2. B. Naranjo et al., Nature, 434, 1115, (2005).


