Predictability of Theory, and
 Collaboration with Experimentalists in CMNS

Xing Z. Li
Dept. of Physics,
Tsinghua University, Beijing CHINA

APS March Meeting, March 10-14, 2008; New Orleans, Louisiana

Notes by X. Z. Li
$>$ Prof. T. Dolan - United Nation Officer, IAEA Coordinator for International Fusion Research (1995-2001), decided to use 3-Parameter formula instead of 5-Parameter formula for D+T Fusion Cross-Section in his Plasma Course at Univ. of Illinois, 2008.
$>$ Because 3-Parameter formula is better than 5Parameter formula not only in numbers but also in Physics.
>3-Parameter formula shows the possibility of having nuclear reaction without strong neutron or gamma radiation.

5-Parameter formula has been listed in a Handbook, "NRL Plasma Formulary", since 1980. It was published by Naval Research Laboratory (NRL/PU/6790-07-500). Most of hot fusion scientists are still using this 5Parameter formula without knowing the draw-back of this 5-Parameter formula.

These figures show the comparison between two formulas in the energy range of 50 keV to 280 keV . The comparison at even lower energy is shown in the next slide.

At low energy (200 eV to 4 keV), our 3-parameter formula is even better than the NRL 5-parameter formula.

3-Parameter Formula is based on Selective Resonant Tunneling Model	5-Parameter Formula is based on Compound Nucleus Model (Breit-Wigner theory)
$\quad \sigma_{r}(E)=\frac{\pi}{k^{2}} \frac{1}{\theta^{2}} \frac{-4 w_{i}}{w_{r}^{2}+\left(w_{i}-\frac{1}{\theta^{2}}\right)^{2}}$ $\begin{array}{l}\text { Geometry } \\ \text { factor }\end{array}$ Gamow	Γ_{r} is the reaction width of a resonance. Fusion Reaction Cross Section increases with $\Gamma_{\mathrm{r}, \text {, }}$ Hence, in this model Excess Heat must come with neutron because neutron channel has the greatest Γ_{r}
$\mathrm{W}_{\mathrm{r}}=0$ for resonance Resonance is	$\sigma_{r}(E)=\frac{\pi}{k^{2}} \frac{\left(\Gamma-\Gamma_{r}\right) \Gamma_{r}}{\Gamma^{2}}$
$\mathrm{w}_{\mathrm{i}} \sim-1 / \theta^{2}$. Resonance is not effective if $w_{i} \gg$ $1 / \theta^{2}$, or $w_{i} \ll-1 / \theta^{2}$	E_{0} is resonance energy Γ is total width of resonance

The red marked part show the difference in physics on which 3-parameter formula and 5-parameter formula are based. Breit-Wigner formula is good only for the heavy or intermediate nuclei, but not valid for the light nuclei. However, most of hot fusion scientists are using 5-parameter formula without knowing this difference.

Conclusion

$>$ Fusion scientists need to know that: the beam-target experiments based on accelerator might not give the correct prediction for the deuteron-deuteron reaction in metal deuterides.
>Selective Resonant Tunneling Model shows clearly the selectivity of resonance, but compound nucleus model does not show it.
$>$ Nuclear energy (Excess heat) without strong neutron or gamma radiation is possible

Once the hot fusion scientists become aware of this draw-back in 5-parameter formula, they will accept the anomalies in metal deutrides.

The following additional slides are for scientists who would like to know more

Naval Research Laboratory Plasma

 Formulary provided a 5-parameter fitting formula:$$
\sigma(E)=\frac{\left(\left(\mathrm{A}_{5}+\frac{\mathrm{A}_{2}}{\left.\left(\left(\mathrm{~A}_{4}-\mathrm{A}_{3} E\right)\right)^{2}+1\right)}\right)\right.}{E\left[\operatorname{Exp}\left(\frac{\mathrm{~A}_{1}}{\sqrt{E}}\right)-1\right]} \quad . \text { (in Barns) }
$$

$$
A_{1}=45.95 ;
$$

$$
A_{2}=50200 ;
$$

$$
A_{3}=1.368 \times 10^{-2} ;
$$

$\mathrm{A}_{4}=1.076$;
$A_{5}=409$.

$$
\begin{aligned}
& \sigma(E)=\frac{\pi}{k^{2}} \frac{-4 B_{1}}{\left(B_{2}-B_{3} E\right)^{2}+\left[B_{1}-\frac{1}{\theta^{2}}\right]^{2}} \frac{1}{\theta^{2}} \\
& \mathrm{~B} 1=-0.392, \\
& \mathrm{~B} 2=0.542, \\
& \mathrm{~B} 3=5.560 \times 10-3 . \\
& \theta^{2}=\frac{\operatorname{Exp}\left[\frac{2 \pi}{k a_{c}}\right]-1}{2 \pi} \quad k^{2}=\frac{2 \mu}{\hbar^{2}} E \\
& a_{\mathrm{c}}=4 \pi \varepsilon_{0} \hbar^{2} /\left(\mu \mathrm{e}^{2}\right)-\text { the length of Coulomb unit. }
\end{aligned}
$$

