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Abstract
A simple 1-dimensional model is used to illustrate “super-absorption” in a crystal lattice. The WKB method 
is applied to calculate the reflection rate and the transmission rate for a single cell. Then matrix algebra is
manipulated to give the relation between the single cell and an array of N cells. The selective resonant
tunneling in this array of N cells is discussed, and the dependence of the absorption rate on the number of
the cells is calculated to show the difference between coherent and non-coherent systems.

1. INTRODUCTION

Super radiation was proposed in 1950s by Dick. [1] Super radiation means that the resultant intensity of N
coherent optical sources will be proportional to N2 instead of N. One might ask that if light is absorbed by
N points of an absorber where the light is coherent in phase; then, what would happen? Would the
absorption be enhanced or reduced? The answer is, “the absorption would be enhanced when certain
resonant conditions are satisfied”. The resonance conditions include not only the frequency of incident
waves, which should be in resonance with the absorbing medium, but also the absorption coefficient in the
medium, which should match with the attenuation of the wave in propagation. We will discuss this
matching in the single cell first; then, we will discuss the matching in a crystal lattice. This enhanced
absorption might be called as “Super-Absorption” [2,3]. An experiment has been proposed to detect the
effect ofthis “Super-Absorption”.

Experiments have showed the wave nature of the deuteron inside the palladium deuteride (hydride)
already. [4-7] Hence, the Multiple Scattering Theory (MST) is supposed to show the correlation between
the anomalous deuterium flux and heat flow. As a first step, a simplified 1-Dimension model is described to
show qualitatively the feature of the Multiple Scattering Theory. Non-coherent diffusion process is quite
different from the coherent wave propagating process.

2. SELECTIVE RESONANT ABSORPTION IN A SINGLE CELL

Figure 1 shows the single cell of a lattice. The wave function of the incident particle might be reflected by a
potential barrier (U2), or trapped by a potential well (U1 or U3=U3r+iU3i), or tunneling through the double
barriers. In the plane-wave-representation, a 22 matrix M may be introduced to describe the relation
between the amplitudes of these wave functions. Having assumed that the potential energy in the well and
barrier varies so smoothly that the WKB method is valid, we may write the M matrix as [2,3,8]:
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is the reduced mass; U1, U2, U3 are the potential in the region 12, 23, and 34 respectively. E is the energy
of the incident particle. r is the distance in 1-dimensional space, is the Planck constant divided by 2.

In the plane-wave-representation, the tunneling wave is represented by a column vector as:
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On the left side of the single cell, the wave function is represented by
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Hence, for this single cell, the tunneling rate, T1, is defined as:
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The reflection rate, R1, is defined as:
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When the imaginary part of the potential vanishes, i.e. U3i=0; then, the conservation of the probability
requires:

Fig. 1 M matrix is used to describe the incident plane wave (M11), and the reflecting
plane wave (M21) . The amplitude of the tunneling wave is fixed as 1
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However, U3i is introduced here to describe the absorption in the region 34. Thus the absorption rate, A1, is
defined as :
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When the wavelength of the incidental particle changes, the phases of the reflecting wave from the first
barrier and the second barrier also change. The superposition of these reflecting waves will determine the
amplitude of the wave reflected by this single cell (i.e. M21). It will show a resonant feature. The resonance
happens when
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In the case of resonance, the perfect tunneling happens and the reflection is zero, i.e. T1=1, and R1=0.
However, if there is any absorption in the well region 34; then,
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In other words, the absorption will introduce the reflection (M210) even if in the case of resonance.

Now one may ask a question: when the module of
the imaginary part of the potential, |U3i|, is getting
greater and greater, will the absorption rate, R1, get
larger or smaller? The answer is: “the absorption rate 
will be get larger first; then it will get smaller”.  The 
physical reason is the interference of two reflecting
waves. When |U3i| is getting greater, the reflecting
wave from the second barrier would be much
weaker; then, there is no way to make M21=0. Thus,
there will be a competition between the absorption
and reflection. When the U3i =0, there is no reflection
because M21 =0 in the case of resonance; however,
there is no absorption also in this case also, because
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, and A1 0. Consequently,

we may find an intermediate value for U3i which
makes A1 maximized. This is a feature of selective
resonant absorption [9-14]. Not only the energy, E,
has to make the real part of J2 , nJ r 22  (n=1, 2, 3……), but also the absorption capacity, U3i, has to
match a specific value. Figure 2 just shows that the absorption rate A1 reaches a peak at the value of U3i

between 0 and - .(was assumed to be 10 in Fig.2)
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We may notice that J1 does not effect the value of tunneling rate or the reflection rate for the single cell.
The situation will be quite different when we calculate these rates in the case of multiple cells.

3. SELECTIVE RESONANT ABSORPTION IN A CRYSTAL LATTICE

Figure 3. A chain of single cells to represent the potential energy inside a crystal lattice for a charged
particle

Figure 3 shows a series of cells, which represent the potential inside a crystal lattice. The reflecting waves
from each single cell will affect the total reflection rate, RN.
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The matrix of N cells, MN, may be expressed by the matrix of the single cell, M, in terms of N and :
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The wave propagation in the lattice cell region will affect the phase of the reflecting wave. This effect is
represented by J1 in the expression of . When
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The resonance condition for a single cell without absorption is:
mJ 2 , (m=1,2,3……) (26)

It gives: = m/2. However, if U3i0; then,
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We may plot the absorption coefficient of
N cells, AN, as a function of in Fig.4. The
curves share the same feature that AN

always equals to zero when =0; and there
is always a peak of AN at certain p.
However, when the number of cells, N,
increases, this peak value of AN increases,
and the location of this peak, p approaches
0. The physical reason for this behavior is
just the selectivity of the resonance
tunneling [9-14]. When =0, it means
U3i=0 (i.e. there is no absorption at all);
hence, AN=0. However, if the absorption is
too strong ( ); then, the reflection
from the first cell is inevitable and there is
no way to cancel it by any reflection from
other cells. As a result, at certain immediate
value of , the total absorption coefficient
will reach its maximum value. The higher
the number of cell is, the higher the
chances that reflection wave will be
cancelled. It means that more waves will
enter the array of the cells and undergo the
absorption there. As a result the peak value of absorption, AN , increases with N. The peak value appears at
the lower absorption, p, for greater N, because the cancellation of the reflecting wave requires less
absorption for more cells.

4. COMPARISON BETWEEN COHERENT AND NON-COHERENT ARRAY OF N
CELLS
It is interesting to compare the behavior of coherent cells and the non-coherent cells in order to see the
“Super-Absorption”. In Fig. 5 the non-coherent beams are plotted for the consequent reflections and
penetrations. The phase of the wave disappears in this figure, because only the module of the wave is
concerned. We still use the same reflection rate, R1, and the transmission rate, T1, for a single cell, but the
phase J1 would not appear any where in the expression of RN(non) , or TN(non). The non-coherent
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reflection rate RN(non), and transmission rate TN(non) for N cells may be expressed by recursion formula
in terms of R1 and T1 as follows:

)R*R-(1
T*R*T

RR
N1

N1N
N1N  (33)

)R*R-(1
T

*TT
N1

1
N1N  (34)

From (33) and (34), it is clear that RN+1> RN, and TN+1<TN. There is no way to make RN=0,if R10.
However, in the case of coherent case, RN may equal to zero even if R10. This is the first distinction
between the non-coherent and coherent case. There is another distinction between two cases as follows.

For the non-coherent cases, R1 and T1 may be assumed to be same as that for coherent case (Eq. (15)-(19)
and Fig. 6a); however, R2 and T2 will be calculated according to formula (33) and (34). In Fig. 6b, we see
that (R2 +T2)=1-A2 forms a minimum also. Nevertheless, this minimum is different from that of the

1 TN*T1

RN

TN*R1*TN

TN*R1*RN*T1

TN*R1*RN*R1…TN

N Cells 1 Cell

R
RN

TN*R1*RN*…T1

Total Reflection:
RN+TN*R1*TN/(1-
R *R )

Total Tunneling:
TN*T1/(1-R1*RN)

0.5 1 1.5 2

0.2

0.4

0.6

0.8

1



R1T1

R1+T1

0.5 1 1.5 2

0.2

0.4

0.6

0.8

1



R2T2

R2+T2

Fig. 6a Minimum of (R1+T1) Fig.6b Minimum of (R2+T2)

Fig.5 Flux Flow for the Case of Non-Coherent Beam



coherent case. We may define an escaping rate as (1-AN); then, this escaping rate would reach its minimum
value when the absorption rate, AN , reaches its peak value. In Fig. 7 this minimum escaping rate is plotted
as a function the number of the cells. The open circles are for the non-coherent cells (equations (33) and
(34)); and the solid circles are for the coherent cells (equations (20), (21), and (22)). Those circles may be
fitted by two fitting curves. For non-coherent cells,

0.82N
N

0.5356
(non)A-1  (35)

For coherent cells,

1.36N
N

0.5179
A-1  (36)

The dependence on N for coherent cells is stronger than that of non-coherent cells. This is the effect of

“Super-Absorption”. It is not the dependence of 
2

1
N

, because in this 1-dimensional case, N cells in an

array are not equal. In the slab model, N cells in each slab are equal; then, the result would be different. It
would be discussed later in another paper.

5. CONCLUDING REMARKS
Although a special WKB model is used in this illustration, the feature is quite general:

(1) The definition of resonance here is no longer an energy level only. It should include a matching
damping, i.e. the absorption capacity U3i. This resonance condition varies with the number of the
cells. However, it always corresponds to the condition of least reflection; i.e. minimizing the
matrix element (MN)21. This concept turns out to be very important when we discuss the
correlation between anomalous deuterium flux and the heat flow in a D/Pd system.

(2) The wave of deuterons inside the palladium deuteride is quite different from a non-coherent
deuteron beam. Their behavior is very different in propagation (reflection, transmission, and
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absorption). Hence, the coherence of the deuterons inside the crystal lattice is essential in
explaining the macroscopic behavior of deuterium flux permeating the Pd thin film.

(3) There is no way to have any resonant behavior in a non-coherent deuteron beam, because the
reflection rate, RN(non), would never be zero.
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