Letts, D. and D. Cravens. Laser Stimulation Of Deuterated Palladium: Past And Present, PowerPoint slides. in Tenth International Conference on Cold Fusion. 2003. Cambridge, MA: LENR-CANR.org.

RF Methods Presented at ICCF 4

TRIGGERING OF HEAT AND SUB-SURFACE CHANGE IN Pd-D SYSTEMS

J.O'M.Bockris, R.Sundaresan, D.Letts and Z.Minevski

Department of Chemistry, Texas A&M University College Station, Texas, 77843

16 December, 1993

In 1992 I began experimenting with NMR triggering which led to a paper with John Bockris in 1993 which was presented at ICCF4 in Maui.

The lab notebook was checked and we found that a 17-step procedure was followed to fabricate the cathode. Multi-Step Cathode Preparation 1. Cut a billet of Palladium 10mm x 10 mm x .5mm Polish to bright using a dremel tool/ fiber brush and Nicksand
 Rinse in tap water. 4. Heat in furnace to 750 c for 3 hours; slowly cool to ambient. 5. Etch for 2 minutes in Aqua Regia at room temperature

Re-polish with dremel and a metal brush using Nicksand
 Polish with dremel and fiber brush using Nicksand
 Ultrasonically clean for 5 minutes
 Anneal 2.5 hours at 850c

- 10. Polish with dremel/metal brush
- Ultrasonically clean 5 minutes using an oxide remover
 Cold roll to .25 mm thickness

- After following the cathode fabrication protocol, the cathode is irradiated with a red laser at a predetermined wavelength.
- Most of the time this results in triggering a thermal response 10-30 times larger than the thermal output of the laser.

Excess Power Statis	tics
Mean	-3.6E-05
Standard Error	0.001373
Median	0.002154
Mode	0.060436
Standard Deviation	0.059401
Sample Variance	0.003528
Kurtosis	0.249109
Skew	0.037701
Range	0.569265
Minimum	-0.23602
Maximum	0.333243
Sum	-0.06705
Count	1871
Confidence Level(95.0%)	0.002693

EarthTech

Left to Right: Dr. Michael Ibison, Dr. Harold Puthoff, Scott Little and Brendan Puthoff of EarthTech, International, Austin, Texas.

- Letts and Cravens have been trying to present a credible cold fusion experiment at EarthTech for 8 years.
- ICCF10 demo experiment #602 finally convinced EarthTech to build a special dual-method calorimeter to test the laser effect to a higher standard than has been used previously.
- Letts and Cravens will work closely with EarthTech over the next several months to perform a series of experiments in a high performance calorimeter called MOAC (mother of all calorimeters).
- If the laser effect appears in MOAC, then cold fusion credibility will be enhanced.

