An X-Ray Diffraction Study of Lattice Expansion and Phase Transformation in Electrochemically Loaded Palladium Hydrides D.L. Kniesⁱ, V. Violanteⁱⁱ, K.S. Grabowskiⁱ, J. Huⁱⁱⁱ, D.D. Dominquezⁱ, J. He^{iv}, S.B. Qadriⁱ and G.K. Hublerⁱ Time resolved, in-situ, high-energy x-ray diffraction was performed on modified Fleishman-Pons electrolytic cells during electrochemical loading of palladium foil cathodes with hydrogen and deuterium. Concentrations of H and D up to 1:1 in 0.1 M LiOH/LiOD in H₂O/D₂O electrolytes were obtained with lattice constant data monitored throughout the range of concentrations. In addition to data on lattice constant versus H or D concentration and palladium hydride resistivity, some indication of the rapidity of loading and deloading of hydrogen from the Pd surface was obtained. The alpha-beta phase transformations were clearly delineated but no new phases at high concentration were definitively determined. ⁱU.S. Naval Research Laboratory, Washington, DC iiENEA, Frascati, Italy iiiNSLS, Brookhaven National Laboratory, Brookhaven, NY ivNova Associates, Alexandria, VA # In Situ Energy-Dispersive X-ray Diffraction Study of Thin Pd Foil at D/Pd and H/Pd ~1 D.L. Kniesⁱ, V. Violanteⁱⁱ, K.S. Grabowskiⁱ, D.D. Dominquezⁱ, J. H. Heⁱⁱⁱ, J. Z. Hu^{iv}, S.B. Qadriⁱ and <u>G.K. Hublerⁱ</u> ⁱNaval Research Laboratory, USA iiENEA, Italy iiiNova Research, USA ivBrookhaven National Laboratory, USA 15th International Conference on Cold Fusion, Oct. 4-9, 2009, Rome, Italy #### **Motivation** • In situ XRD not performed for H/Pd > 0.76 in Fleischmann-Pons electrolytic cells #### Possibility of learning - Does a new γ phase was suggested by Tripodi et. al. for the electrochemically loaded palladium when the composition H/Pd approaching 1 exist? - Does temperature coefficient of resistivity of PdH versus the concentration of H anomaly show up in Pd crystalline structure (Tripodi et. al.)? - In the Pd-D system, new phases were found through deuterium thermal desorption spectra. Does anything show up on FPE system (Rybalko et. al.)? - Report showing oscillating resistivity for palladium hydrides at some concentration range of H/Pd>0.9 (Miley et. al.). - These proposed phase transitions are only based on indirect experimental data and have not been structurally determined. ### Temperature Coefficient of Resistance Figure 3: Temperature coefficient of resistivity λ for all phases. The dashed is the plateau value for λ . #### Pd Foil Cathodes - Pd 0.9995 purity fabricated at ENEA by V. Violante - Rolled from 1 mm thick bar to 50 µm thickness, annealed 850 C for 8 hours, etched in aqua regia for 2 minutes, cleaned in water and alcohol - 20 mm x 40 mm dimension - ~100 μm grain size ### Electrochemical Cell - Designed and built by ENEA - Dual Pt anodes ### Electrochemical Cell ## Experimental Measurements #### Cell Measurements - Temperature - 1 thermocouple in electrolyte - 5 RTD's external to cell - Electrolysis - Current - Voltage - Cell Pressure - Baratron - Safety valve - R/R_0 - 4-point probe @ 1 kHz - Time - Data rate - 1/4 Hz #### X-Ray Measurements - 14 μm tall, 23-μm wide x-ray beam - Diffraction spectra collection time ~5 minutes - Ge high resolution detector No Calorimetry! ## Brightness of NSLS Beam Lines #### X-Ray Transmission through Electrochemical Cell Absorption thru the Cell with 2.7 cms of $\rm H_2O$ and 0.3 cms of Glass with a density of 2.7 g/cm₃) ## BNL X17C Hutch Equipment ## Bragg Condition $2d \sin \theta = n\lambda$ $$E = hv$$, $\lambda v = c$ $$2d \sin\theta = nch/E$$ or $$Ed \sin\theta = 6.1992n$$ Continuous energy picks out d for properly oriented planes ## Detection Volume - 1.6 x 10⁻¹² m³ collimated X-ray beam is 23 μm wide x 14 μm tall collimated diffracted beam is 50 μm wide x 500 μm tall $2\theta = 13 \text{ degrees}$ view from top #### **Detection Volume** Near surface sampling (Pd x-ray fluorescence observed) #### **Detection Volume** view from top Bulk sampling (No Pd x-ray fluorescence observed) ### Unexpected Challenges & Observations - Control of geometry difficult due to movement of foil from stresses caused by 13% volume change as cathode was loaded with hydrogen. - •Since beam covered only a few grains, diffraction condition often had to be found by x-y-z position scanning. - When cell abruptly turned off at high loading fraction, electrolyte turned black and then clarified in ~ 60 seconds. Presumably this was caused by rapid removal of impurities plated on the cathode surface that then dissolved into the electrolyte. - Observation of spontaneous deloading under current control. - Observation of highest loading fractions early in loading cycle. ## Cathode Loading Descriptions | Cathode | Electrolyte
e 0.1M LiOD in | R0
mOhm | Total
Time | Total
Charge (C) | Total
Energy (kJ) | Maximum
H/Pd Ratio
fr resistivity | Maximum
(H,D)/Pd Ratio
fr lattice const. | |---------|-------------------------------|------------|---------------|---------------------|----------------------|---|--| | NRL#2 | D_2O | 3.69 | 46:15 | 6337 | 22.14 | 0.85 | 0.89 | | L23 | D_2O | 3.82 | 30:15 | 5974 | 18.32 | 0.87 | 0.93 | | B2 | D_2O | 10.08 | 48:22 | 110947 | 783.24 | 0.95 | 1.02 | | L5 | H ₂ O | 5.24 | 09:56 | 4354 | 18.19 | 0.97 | 1.01 | #### Tentative observations: - •R/R0 four point probe underestimates loading ratio - •R/R0 is a good in situ qualitative guide for loading ratio - •Thinner foils loaded to higher ratio ### Observation of Spontaneous Deloading ## Electrochemical History ## Electrochemical History ## Systemmatics of Loading ## Systemmatics of Loading ### High Loading Fractions at Early Time ## Typical X-Ray Spectrum Semi-Log Plot - Intensity falls off at low E due to absorption in electrolyte - Pd K-edge absorption below 23 keV - Intensity falls off at high E due to x-ray beam intensity fall-off - In this spectrum, 10 x-ray diffraction peaks fit well - Fluorescence peaks for Pb and Sn appear during all cell runs - Pd fluorescence used to monitor surface - Only a few instances where Alpha and Beta diffraction seen simultaneously. Therefore, within ~ 3-5 min intervals, the phase change is complete - Only several grains interrogated ## Cathode Loaded with Hydrogen ### **Summary - Electrolysis of 4 Cathodes** #### **Observations consistent with literature** More difficult to load D than H Spontaneous deloading under current control Evidence of large amount of deposited impurities on surface R/R0 in situ resistivity measurement is a good *qualitative* guide to loading ratio Once a cathode has been loaded to high a ratio, it can not be loaded a second time #### **Tentative new observations** Higher starting resistivity foils (thinner foils) loaded to higher D/Pd ratio Highest loading ratios occur at early time in loading cycle All four ENEA-prepared cathodes loaded to high D/Pd ratios ### **Summary - X-Ray Diffraction** #### **Observations consistent with literature** alpha-beta phase change #### **Tentative new observations** Rapid surface deloading and reloading Very few x-ray spectra with both Alpha and Beta phases present suggests that within multiple grains, the transformation from Alpha to Beta is very rapid (within the 3-5 minute time resolution of the data) Highest D/Pd ratio early in loading cycle #### **New observations** High D content by x-ray diffraction (D/Pd = 1.02) R/R0 measurement consistently underestimates the loading ratio No obvious new phase at high loading fractions (for Pd sublattice only) First time x-ray diffraction performed in FPE cell at concentrations greater than D/Pd > 0.76 ### **Conclusions** - Time resolved, in-situ, high-energy x-ray diffraction was performed on modified Fleishman-Pons electrolytic cells during electrochemical loading of palladium foil cathodes with hydrogen and deuterium. - Concentrations of H and D up to 1:1 in 0.1 M LiOH/LiOD in H₂O/D₂O electrolytes were obtained. - While very interesting data in its own right, no new anomalous behavior was observed that identifies a mechanism of FPE. Table I: Maximum Electrolytic Loading Ratios Achieved in the Pd-H and Pd-D systems. | System | Loading
Ratios | Loading Conditions and/or Sample Preparation | In Situ X-Ray or
Neutron Diffraction | Year | Ref | |------------|-------------------|---|---|------|-----| | Pd-D | 0.72 | 0.1 M LiOD | x-ray diffraction | 1998 | 27 | | Pd-D | 0.92-0.96 | 1M LiOD, stepwise changed current density; 0.96 if etched with aqua regia, 0.92 if polished with diamond grit | none | 1997 | 12 | | Pd-H; Pd-D | 0.78-0.82 | 0.1 M/1M LiOH or LiOD, 50 mA/cm ² | none | 1996 | 13 | | Pd-H; Pd-D | 0.76 | 0.1 M LiOD | x-ray diffraction | 1995 | 14 | | Pd-H;Pd-D | 0.85-0.90 | 1 M LiOH and LiOD | none | 1995 | 15 | | Pd-D | 0.91-0.93 | Pd was vacuum annealed and acid etched. | none | 1994 | 16 | | Pd-D | 0.55 | 0.1 M Li ₂ O in D ₂ O | neutron diffraction | 1990 | 66 | ## High H Content ## Pd-H Phase Diagram Figure 1: The phase diagram of Pd-H system. Figure 2: The phase diagram of Pd-D system (Here, α ' phase means β) at low temperatures. ## Shifts in XRD peaks with time Figure 5: Temporal dependence of the intensity of (422) diffraction peaks of α and β phases. #### D/Pd > 1