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Abstract
An improved parametric representation of Coulomb barrier penetration is presented.

These detailed calculations are improvements upon the conventionally used Gamow
tunneling coefficient. This analysis yields a reaction barrier transparency (RBT) which
may have singular ramifications for cold fusion, as well as significant consequences in a
wide variety of fusion settings.

1. Introduction
Recently, Kim and Zubarev1 developed a general and realistic barrier transmission

model which can accommodate simultaneously both non-resonance and Coulomb barrier
transmission resonance contributions. The derivations for both cases will be presented.
The resonance analysis culminates in a reaction barrier transparency (RBT) which is due
to the interaction of the transmitted and reflected waves yielding constructive interference
in a narrow energy regime. Although RBT may have significant consequences for a wide
variety of fusion problems, we will explore cold fusion applications here.

2. Conventional Parameterization
The conventional protocal for determining low-energy (< 20 keV) fusion cross-sections

σ(E) is to extrapolate experimental values of σ(E) measured at high energies using the
parameterization2

where TG(E) = exp[–(EG/E)1/2], EG = (2παZ1Z2)
2μc2/2 with the reduced mass μ =

m1m2/( m1 + m2) and E is the center-of-mass (CM) kinetic energy. The transmission



coefficient (“Gamow” factor) TG(E) results from the approximation E << B (Coulomb
barrier height). This technique is used for nuclei in non-resonance reactions such as in
standard solar model, and magnetic and inertial confinement calculations.

In order to generalize the conventional Gamow transmission coefficient, we introduce
for the fusing system the following potential which consists of an interior square-well
nuclear potential and an exterior Coulomb repulsive potential,

For the potential barrier given by eq. (2), an approximate S-wave ( 0 ) solution for
T(E) can be calculated in the Wentzel-Kramers-Brillouin (WKB) approximation as3

where B is the Coulomb barrier height, ReZZB /2
21 and ra is the classical turning point,

EreZZ a /2
21 . Note that )(ET WKB

R is defined only for BE  and that 1)( ET WKB
R . The

traditional Gamow transmission coefficient used in eq. (1) can be obtained from eq. (3)
with R = 0 (or equivalently E << B):

3. Kim-Zubarev Parameterization
TG(E), eq. (4), represents the probability of bringing two particles to zero separation

distance. This implies that the Coulomb barrier reZZ /2
21 also exists inside the nuclear

surface of radius R, which is unphysical and unrealistic. In order to accommodate more
realistic transmission coefficients. Kim and Zubarev1,4 have recently introduced a more
general parameterization for σ(E) based on the P-matrix parameterization of the fusion
reaction S-matrix.

To obtain improved and more general transmission coefficients, we use partial wave
solutions of the Schrodinger equation. For the potential described by eq. (2), a general
solution of the radial Schrodinger equation for the exterior wave function in the exterior
region (r ≥ R) is given by5



where

c
 is the Coulomb phase shift and )(

u is the complex conjugate of )(
u . F and G are

the regular and irregular Coulomb wave functions normalized asymptotically  r as

where γ is the Sommerfeld parameter,  /2
21 eZZ and k is related to E by

2/22kE  .

In terms of the partial wave S-matrix, l , in eq. (5), the fusion reaction total cross-

section  Er is given by5

To accommodate the statistical factor and to compensate the two-body approximation
involved in deriving eq. (8), we introduce the partial wave S-factor,  ESl , which is

expected to be nearly energy-independent or weakly energy-dependent, and rewrite

where  ESl is the l-th partial wave S-factor and

In order to determine the partial wave S-matrix l in eq. (5), we introduce the P-matrix

as the logarithmic derivative of the interior wave function  rul
int at r = R:

where int
lP and 0int  lP are the real and imaginary parts of int

lP , respectively. For the

exterior wave function, the P-matrix at r = R is defined as



We introduce the P-matrix for )(
lu as

where l and ls are the real and imaginary parts of )(
lp , respectively. By matching the

logarithmic derivatives at r = R, i.e., ext
ll PP int , we obtain1,4

In the Kim-Zubarev parameterization of  ETl , int
lP and int

lP are to be

parameterized directly or in terms of a potential model wave function for the interior
region (r < R).

4. Reaction Barrier Transparency

We note that the reaction barrier transparency (RBT),   1ETl , can occur when
int

ll P and int
ll Ps  . For simplicity, our discussion in this paper will be limited to

the S-wave case, l = 0, in the following. Generalization to the 0l cases is straight
forward.4

For the potential given by eq. (2), a general solution for the interior (r ≤ R) wave
function is

where EVK  0
22 2/  with 2/22KE  . We introduce two real parameters 0 and

0 and write  100
0   iec .

If the lowest partial wave (l = 0) contribution is expected to be dominant for low
energies (≤ 20 keV), then the total cross-section  E is given by



and
2

00 1)( ET KZ is given by

)(0 ET KZ , eq. (20), is described by four parameters, 0V , R, 0 and 0 . )(0 ET KZ contains

both non-resonance and resonance contributions, and also the interference term between
them. The four parameters can be determined from the cross-section containing both a
resonance part (resonance energy and width) and a non-resonance background.

We note that 1)(0 ET KZ when RBT condition, RK20  and RKs 10  , is satisfied

in eq. (20). The resonance energy rE (for 1)(0 r
KZ ET ) and width  are determined by

the parameters 0 and 0 for fixed values of V0 and R. The resonance behavior of

)(0 ET KZ , generated from fitting  E with particular values of parameters, is a reaction

barrier transparency (RBT) due to an interplay of Coulomb barrier and nuclear
interaction, and is to be distinguished from conventional resonances such as narrow
neutron ( 00  ) capture resonances, which are primarily due to the nuclear interaction.

The resonances present in  E , which are shown by some related experiments to be of a

non-RBT type, are to be treated by conventional methods. Very broad resonance
behaviors for cross-sections observed in many nuclear reactions6 such as for reactions
2H(D,p)3He, 2H(D,n)3He, 3He(D,p)4He, and 3H(D,n)4He may correspond to RBT
resonances and may yield different low-energy extrapolations from those obtained by the
use of the conventional transmission coefficient,  ETG , since the low-energy tail of the

RBT resonance is expected to be different from that of the conventional case.

For the case of a non-resonance cross-section, 00  , and )(0 ET KZ , eq. (20), reduces to

the result given by Blatt and Weisskopf5,



It should be noted that  ETBW , eq. (25), does not have a resonance structure while

)(0 ET KZ does.

In the previous parameterizations of  E the resonance part of  E is parameterized

with the Breit-Wigner resonance formula to be subtracted from the experimental data2,3 or
included in S(E) in eq. (1).6 The non-resonance formula, eq. (1), is then used to fit the

resultant “data.” Our more general formula for )(0 ET KZ , eq. (20), with eq. (19), will allow

us to parameterize the experimental data exhibiting the RBT resonance behavior by the
same formula, eq. (19), thus avoiding separate use of the Breit-Wigner formula for
subtracting the resonance contribution from  E . Furthermore, the interference term

between the resonance and non-resonance contributions is automatically included in eqs.
(19) and (20). The formulation described by eqs. (9), (15), (19), and (20) is a
generalization of eq. (1) and thus can provide a more realistic and general
parameterization method for low-energy nuclear fusion cross-sections needed for the
solar neutrino and astrophysical calculations, magnetic and inertial confinement fusion
calculations, and low-energy (cold) fusion rate calculations.

5. Fusion Rate Estimates with Narrow RBT

Since  02cos KR (in eqs. (23) and (24)) and  02sin KR (in eq. (23)) satisfies

    12sin2cos 0
2

0
2   KRKR , 0 can be expressed in terms of K , 1K and 2K as

For the case of 02 RK and 01 NsRK  (RBT condition) where N > 0 is a real

constant, we obtain using eq. (26)

and

After determining 0 from eq. (27), 0 can be determined from

From eq. (20), the maximum value of  Et KZ
0 is then given by

which yields 1)(max
0 ET for N = 1 and 1)(max

0 ET otherwise.



Assuming that )(0 ET KZ , eq. (20), has a Breit-Wigner resonance form with a width  at a

resonance energy rEE  , the width  at low energies can be written as4

   7
10 10 RKEs r eV. Since    rGr ETEs 3.00  and  rENsRK 01  , we obtain for

N >> 1

using NET KZ /4)(0  from eq. (30). Since  rG ET is very small near ambient

temperature, 025.0 rEkT eV,  is also very narrow;  = 10-10 eV and  = 100-100 eV

for )(10)( 17
0 rGr
KZ ETET  and )(10)( 107

0 rGr
KZ ETET  , respectively. Precise values of

 for different fusion reactions can only be determined by experiments at present.

For the fusion cross-section          0/0 0 SESEETSE KZ  = 53 keV-barns for

D(D,p)T and D(D,n)3He, the fusion rate can be estimated as

Since the conventional estimate is given by

we can conclude
convnew

  for the equilibrium Maxwell-Boltzmann distribution

f( ) at ambient temperature of kT ≈ 0.025 eV. However, non-equilibrium energy
sweeping through the narrow RBT may result in a greatly enhanced fusion rate7 as in
cold fusion experiments. Recent observations8-11 of anomalous neutron bursts during
thermal cycling with deuterated high TC superconducting materials may be attributable to
energy sweeping involving a non-equilibrium state during the superconducting phase
transition.



6. RBT Mechanism for Other Fusion Reactions

In view of our new result )(0 ET KZ , eq. (20) or )(ETl , eq. (15), it is appropriate to ask

whether some fusing systems can support an RBT at low energies near the fusion
threshold. This can only be answered at present by experiments. It should be emphasized
that RBT cold fusion is possible not only with deuterium but also with hydrogen since

)(0 ET KZ , eq. (20), is applicable to both cases as long as the RBT exist in fusing systems

involving deuterium or hydrogen, such as in nuclear fusion reactions with the entrance
channels, D + D, D + Li, D + Pd, H + D, H + K, etc.

Given the RBT mechanism for cold fusion the question remains why fusion products
are observed in cold fusion experiments at a much lower level than commensurate with
the observed excess heat. This question can only be addressed separately for each fusion
reaction since the exit channels are different for each reaction. The anomalous excess
heat and tritium production reported in many electrolysis or similar experiments may not
be due to D - D fusion, but may include nuclear fusion with hydrogen and/or impurity

nuclei which are always present. This scenario and others such as   LipdLi
76 , ,

  HeHedLi
547 , , etc. may explain the results of excess heat, tritium and neutron

production observed in heavy water(with Li) electrolysis experiments. Scenarios for other
cases involving both deuterium and hydrogen may be possible and need to be
investigated.

7. Summary and Conclusion
Our progressively more generalized parametric representation of Coulomb barrier

tunneling yields significant improvements upon the conventionally used Gamow
tunneling coefficient. This analysis yields RBT which is due to the interaction of the
transmitted and reflected quantum waves yielding constructive interference in a narrow
energy regime. RBT appears to have important ramifications for cold fusion.
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