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Abstract 

 
      There have been a number of reports of observation of nuclear fusion events in acoustic cavitation experiments with 
deuterated liquid.  Some of the reported results have been interpreted as a result of achieving thermonuclear fusion 
temperatures (~a few keV) during acoustic bubble cavitation (ABC).  We propose an alternative theoretical model for the 
ABC fusion based on Bose-Einstein condensation (BEC) mechanism. 

Our theoretical model yields two main predictions.  The first prediction is that the Coulomb interaction between two 
charged bosons is suppressed for the case in which number N of charged bosons is large, and hence the conventional 
Gamow factor is absent. The second prediction is that the fusion rate depends on the probability of the BEC ground state 
occupation instead of the conventional Gamow factor.  This implies that the fusion rate will increase as the temperature of 
the system is lowered since the probability of the BEC state is larger at lower temperatures.  These predictions imply that the 
ABC fusion may be achievable at lower temperatures. 

A number of key improvement to acoustic cavitation experiments are proposed to check these predictions as well as the 
results of other experiments. 

 
1. Introduction 
 
      Recently, Taleyarkhan et al. [1] reported observation of tritium and neutron production 
during their acoustic cavitation experiment using deuterated acetone and a pulsed neutron 
generator.  Earlier, there were acoustic cavitation experiments of another type carried out by 
Stringham [2].  In Stringham’s experiments [2], transient cavitation bubbles (TCB) were 
created in heavy water without the use of a neutron generator and were driven to impact on 
target metal foils as a jet plasma.  It has been reported [2] that these TCB jet plasma impacts 
produce excess heat and nuclear products (4He and tritium) suggesting a plasma impact 
fusion.  In 1990, Lipson et al. reported observation of a very low level of neutron production 
in a TCB type experiment [3]. 
      Recently, a theoretical model of low-energy nuclear reaction in a quantum many-body 
system was developed to describe the anomalous ultra low energy nuclear reaction [4-6].  
Approximate ground-state solutions of many-body Schroedinger equation for a system of N 
identical charged integer-spin nuclei (“Bose” nuclei) in a harmonic trap were obtained by the 
recently developed equivalent linear two-body (ELTB) method [7,8,9].  The ELTB method 
[8,9] is based on an approximate reduction of the many-body Schroedinger equation by the 
use of a variational method.  The solution is expected to be accurate for the large N system.  
The solution is used to derive theoretical formulae for estimating the probability and rate of 
nuclear fusion for N identical Bose nuclei confined in a trap. 
      These theoretical formulae yield two main predictions.  The first prediction is that the 
Coulomb interaction between two charged bosons is suppressed for the large N case and 
hence the conventional Gamow factor is absent.  This is consistent with the conjecture made 
by Dirac [10] that each interacting neutral boson behaves as an independent particle in a 
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common average background for the large N case.  The second prediction is that the fusion 
rate depends on the probability of the Bose-Einstein condensate (BEC) ground state instead 
of the conventional Gamow factor.  This implies that the fusion rate will increase as the 
temperature of the system is lowered since the probability of the BEC state is larger at lower 
temperatures.  These theoretical predictions imply that the ABC fusion may be achievable at 
lower temperatures.  

With these considerations in mind, we propose a number of key improvements to acoustic 
cavitation experiments to check these predictions as well as the results of other experiments 
[1,10]. 

 

2. Bose-Einstein Condensation Mechanism 
 
2.1 Ground-State Solution 

In this section, we consider N identical charged Bose nuclei confined in an ion trap or in a 
bubble.  For simplicity, we assume an isotropic harmonic potential for the ion trap to obtain 
order of magnitude estimates of fusion reaction rates.  The hamilton for the system is then 
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where m is the rest mass of the nucleus.  In order to obtain the ground-state solution, we will 
use the recently developed method of equivalent linear two-body (ELTB) equations for 
many-body systems [7,8,9]. 
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 For the ground-state wave function Ψ, we use the following approximation [8] 
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In reference [8] it has been shown that approximation (2) yields good results for the case of 
large N.   
 By requiring that  must satisfy a variational principle Ψ% 0H dδ τ∗∫Ψ Ψ =% %  with a subsidiary 
condition , we obtain the following Schrödinger equation for the ground state 
wave function 
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 Instead of the variable ρ  in the Schrödinger equation (4), we introduce a new quantity ρ%  
defined as  
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Substitution of Eq. (6) into Eq. (4) leads to the following equation 
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with   The ground state solution of Eq. (8) has been obtained in the 
following form 
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where c  are determined from Eq. (8) [5]. i

 
2.2 Short-Range Nuclear Interaction 
      In order to calculate the nuclear fusion rate, we need to specify the short-range nuclear 
interaction between two deuterons.  For the dominant contribution of only s-wave at low 
energies, we use the optical theorem formulation of nuclear reactions [11,12] to write  
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0
n elf  is the s-wave nuclear elastic scattering amplitude and rσ  is the nuclear fusion 

cross-section. rσ is conventionally parameterized as 
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the nuclear fusion reaction between two deuterons.  For D(d,p)t and D(d,n)3He reactions, S ≅ 
55keV-barn for each case. 

(12) 

In terms of the partial s-wave t-matrix, the elastic scattering amplitude,  can be 

written as              
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where 0
cψ  is the Coulomb wave function. 

 For our case of N Bose nuclei (deuterons) to account for a short range nature of nuclear 
forces between two nuclei, we introduce the following Fermi pseudo-potential  V  ( ),F rr
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where the nuclear rate constant A is determined from Eqs. (11), (12), and (13) and given by 
(14) 
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2.3 Fusion Probability and Rates 
 For N identical Bose nuclei (deuterons) confined in a bubble, the nucleus-nucleus (deuteron-
deuteron) fusion rate is determined from the ground state wave function Ψ for trapped 
deuterons as  
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where  is the imaginary part of the Fermi potential, given by Eq. (14), and Ω is the 
probability of the ground state occupation.   

Im F
ijV

 The substitution of Eq. (2) into Eq. (16) yields 
(17) 

         
2 3

0
3/ 2 2

0

( )( 1) (3 / 2)
2(2 ) (3 / 2 3/ 2) ( )b

dAN N NR
N d

ρ ρ ρ
π ρ ρ

∞ −

∞

∫ ΦΩ − Γ
=

Γ − ∫ Φ
 

For large N, we use an approximate solution for ( )ρΦ  (see Eq. (10)) 
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Using Eq. (18), we obtain from Eq. (17) 
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We can rewrite Eq. (19) as  
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 The average size  of the ground-state for Bose nuclei confined in a bubble can be 
calculated using the ground-state wave function, Eq. (18), and is related to ω by the following 
relation for the case of large N, 
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where  and  is Bose nuclei density in a bubble.  In terms of n  we 
can write 
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2.4 Total Fusion Rate and Theoretical Predictions 
 To estimate the total fusion rate, we consider multiple cavitation bubbles.  For the case of 
multiple cavitation bubbles with each bubble containing N Bose nuclei, we define a bubble 
number density nb (number of bubbles per unit volume) as  

               ,b
b

Nn
N

=  (24) 

 



where Nb is the total number of Bose nuclei in bubbles per unit volume and N is the average 
number of Bose nuclei in a bubble.  For this case, the total nuclear fusion rate R per unit 
volume per unit time is ( )b bR n R=  
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We note a very important fact that both Rb and R do not depend on the Gamow factor in 
contrast to the conventional theory for nuclei fusion in free space.  This is consistent with the 
conjecture noted by Dirac [8] and used by Bogolubov [13] that boson creation and 
annihilation operators can be treated simply as numbers when the ground state occupation 
number is large.  This implies that for large N each charged boson behaves as an independent 
particle in a common average background potential and the Coulomb interaction between two 
charged bosons is suppressed.  Furthermore, the reaction rates Rb and R are proportional to Ω 
which is expected to increase as the operating temperature decreases. 

(25) 

       Using S = 110keV-barn for both deuteron-deuteron fusion reactions, we find from Eq. 
(15) the nuclear rate constant to be  

(26)             16 31.5 10 / sec.A cm−≈ ×
and from Eqs. (21) and (26), we have  
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With B given by Eq. (27), the total nuclear fusion rate R per unit time per unit volume, Eq. 
(25), can be written as       
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      Our theoretical formula for the total nuclear fusion rate R per un
given by Eq. (23) or Eq. (28) gives the following three predictions. 
 
Prediction 1: R does not depend on the Gamow factor in contrast to
for nuclear fusion in free space.  This is consistent with Dirac’s conje
 
Prediction 2: R increases as the temperature decreases since Ω incre
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Prediction 3: R is proportional to 2
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 where N is
Bose nuclei in a single bubble and is the average size of bubbles. 
 
     The above predictions 1 and 2 imply that the acoustic cavitation
achievable at lower temperatures.  These theoretical predictions can b
 
3. Proposed Experiments   
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reflections off materials within the room.  Typical neutron die away times range between 100 
and 200 microseconds which is significantly longer than the expected arrival time, of 27 
microsecond for the neutron fusion signal using time zero as the start of the neutron pulse 
from the neutron generator to the observation of a fusion neutron from bubble implosion.  We 
propose to replace the pulsed neutron generator system with an associated particle neutron 
generator to induce the cavitation bubbles in an experimental arrangement shown in Figure 1.  
This type of generator has the advantage that the time of production and the neutron flight 
direction are known.  We propose to conduct the experiment in a low mass environment in a 
large experimental area with modeled and measured neutron die away times of 50 
microseconds or less as shown in Figure 2.  By running the generator at a neutron production 
rate of approximated 1 neutron per die away time, criticisms of generator neutron overlap 
with possible fusion neutron observation will be eliminated.  Because the associated particle 
neutron generator produces neutrons uniformly in time and not pulsed, the associated 
backgrounds are reduced by the ratio of the pulsed time to total cycle time.  Another 
advantage of the associated particle neutron generator is that the neutrons can be pointed to 
volumes within vessel volume.  When operated in standing wave mode each volume element 
is associated with a fixed phase of the acoustic cycle [15,16].   In this way a neutron can be 
pointed to a precisely known phase within the acoustic cycle.  Out of phase neutrons serve as 
a control sample to establish and understand background issues in the experiment during the 
data collection process.  If fusion neutrons are produced during the cavitation collapse then 
they will show up only for these neutrons induced events with the correct phase and have 
generator neutrons pointing at the cavitation bubble.  Cosmic ray induced events are 
eliminated because they will not have a generator neutron associated with them.  

 
Figure 1.  Advanced Neutron Induced Cavitation Experiment using Impulse Devices high pressure, multiple high intensity 
acoustic actuators vessel. 

 



 
Figure 2.  The experiment will be housed on a low mass platform in a large experimental area. The goal is that neutron 
reflections are minimized.  Only one neutron will be produce per neutron die away time.  

     The use of a pressure vessel capable of 1000 atmospheres will allow a variety of fluids to 
be tested under both medium and high negative pressures [17,18,19].  Materials that may be 
gases at atmospheric pressure can also be tested.   
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