Kidwell, D., et al. *Does Gas Loading Produce Anomalous Heat? (PowerPoint slides)*. in 15th International Conference on Condensed Matter Nuclear Science. 2009. Rome, Italy: ENEA. This is a PowerPoint presentation converted to Acrobat format. The original PowerPoint slides are here: http://lenr-canr.org/powerpoint/KidwellDdoesgasloa.ppt Here is the abstract for this paper: #### **Does Gas Loading Produce Anomalous Heat?** David A. Kidwell, Allison E. Rogers, Kenneth Grabowski, and David Knies Chemistry Division, Naval Research Laboratory, Washington, DC 20375; Materials Science and Technology Division, Naval Research Laboratory, Washington, DC 20375 Simple pressurization of nanosized palladium with deuterium appears to be a simpler and more rapid method to generate anomalous heat compared to electrolytic systems. A survey of the literature indicates that palladium particles less than 2 nm in size can obtain a Pd/D loading near one at modest deuterium pressure. In hundreds of reactions, we have routinely prepared palladium nanoparticles inside an aluminosilicate matrix and have found that these systems produce up to 8 fold more heat with deuterium compared to hydrogen. Furthermore, a characteristic signature of a pressurization reaction is its reversibility – the heat released upon pressurization should be absorbed upon evacuation. This reversibility is observed with hydrogen but not deuterium. Although we are still seeking conventional explanations for this excess heat, the anomalous heat does not appear to be explained by impurities in the deuterium gas nor other simple chemical or physical sources. The selection and preparation of the particles, the experimental set-up, and results will be discussed. This is from ENEA. Abstracts. in 15th International Conference on Condensed Matter Nuclear Science. 2009. Rome, Italy, p. 41. http://lenr-canr.org/acrobat/ENEAabstracts.pdf # Does Gas Loading Produce Anomalous Heat? #### David A. Kidwell, Allison E. Rogers, Kenneth Grabowski, and David Knies Naval Research Laboratory Washington, DC 20375 (202)767-3575 David.Kidwell@nrl.navy.mil October 6, 2009 ## **Basic gas loading experiment** ### Set-up in Hart calorimeter in Nanoscience Institute (NSI) ### **Basic gas loading experiment** (Internal Control) $OH_2 = D_2$ (External Control) ### Loading using commercial 5% Pd/BaCO3 - Control #### **Exothermic:** - Heat of Chemical Reaction - Heat of D₂ uptake - Heat of Pressurization (PV work) - Other Heat #### **Endothermic:** - Heat of D₂ release - Heat of Evacuation (PV work)C - Hart calorimeter no excess heat is observed - Heat In = Out; $D_2 = H_2$ - Internal and External Controls OK ### **Matrix without Pd - Control** #### **Endothermic:** Heat of Pressurization (PV work) #### **Endothermic:** - Heat of Evacuation (PV work) - Hart calorimeter- no excess heat is observed - Heat In = Out; $D_2 = H_2$ - Internal and External Controls OK ## Loading using Pd/Graphite Paper - Hart calorimeter- no excess heat is observed - Heat In = Out; $D_2 = H_2$ - Internal and External Controls OK ## Tying Gas Loading to Electrolytic Loading - Hydrogen diffusing into Palladium expands the lattice - Because of this counter force, most Palladium takes-up 0.5-0.7 parts hydrogen - Generally very high pressures are needed to get Palladium to uptake hydrogen beyond PdH_{0.7} – est. 10⁵-10⁶ Atm to reach PdH₁ - In 1908, Paal and Gerum reported Pd:H_{0.98} using Palladium black prepared with hydrazine (*Berichte*, **41** (1908) 818.) ## **Tying Gas Loading to Electrolytic Loading** - Hydrogen diffusin - Because of this contract parts hydrogen - Generally very hig uptake hydrogen - In 1908, Paal and prepared with hyd From: P.L. Levine and K.E. Weale, "The Palladium + Hydrogen Equilibrium at High Pressures and Temperatures", *Transactions of the Faraday Society*, **56** (1960) 357-362. ### **Literature Results - Particle Size** Certain size particles (< 2 nm) take-up hydrogen 1:1 Fig. 1 Uptake isotherms for sorption of hydrogen on Pd/Al_2O_3 sample at 298 K: \bigcirc , 2% $Pd(N)/Al_2O_3$; \blacksquare , 2% $Pd(Cl)/Al_2O_3$; ∇ , 1% $Pd(Cl)/Al_2O_3$; \bigcirc , 0.5% $Pd(Cl)/Al_2O_3$ **Figure 1.** Adsorption isotherms of hydrogen uptake at 313 K for different palladium samples: (a) Pd powder (RP); (b) 20Pd/SiO₂ (IW); (c) 20Pd/SiO₂ (IE); (d) 10Pd/SiO₂ (SG); and (e) 05Pd/SiO₂ (SG). From: Sheng-Yang Huang, Chin-Da Huang, Boh-Tze Chang, and Chuin-Tih Yeh, "Chemical Activity of Palladium Clusters: Sorption of Hydrogen", *J. Phys. Chem. B*, **110** (2006) 21783-21787. # Literature Results — Particle Size Certain size particles (< 2 nm) take-up hydrogen 1:1 | Preparation | Estimated
Particle Size
(nm) | Heat of Hydrogen
Adsorption
(kJ/mole) | Ratio H:Pd @ 0.2
Atm | |--------------------------------|------------------------------------|---|-------------------------| | Pd Powder | 9 | 94 | 0.55 | | 1.86% Pd/SiO ₂ (IW) | ~4 | 92 | 0.68 | | 10% Pd/SiO ₂ (SG) | 1.1 | 131 | 0.9 | | 5% Pd/SiO ₂ (SG) | 1 | 183 | 1.05 | Data from: Sheng-Yang Huang, Chin-Da Huang, Boh-Tze Chang, and Chuin-Tih Yeh, "Chemical Activity of Palladium Clusters: Sorption of Hydrogen", J. Phys. Chem. B, 110 (2006) 21783-21787. ## **Hypothesis for Excess Heat** - Particle size is important - <2 nm allows rapid loading to Pd:D 1:1</p> - Need isolation to keep from sintering used Zeolites From: http://www.molecularsieve.org/Zeolite_Molecular_Sieve.htm ## **Hypothesis for Excess Heat** - Particle size is important - <2 nm allows rapid loading to Pd:D 1:1</p> - Need isolation to keep from sintering used Zeolites From: http://www.molecularsieve.org/Zeolite_Molecular_Sieve.htm ## **Hypothesis for Excess Heat** - Particle size is important - <2 nm allows rapid loading to Pd:D 1:1</p> - Need isolation to keep from sintering used Zeolites From: http://www.molecularsieve.org/Zeolite_Molecular_Sieve.htm ## Characterization of Particle Size Not readily visible via TEM due to matrix ## Matrix with Pd - 0.5% Pd on NRL Matrix | Heat from 2 nd D2 pressurization | -77.6 | |---|-------| | Endothermic heat from 2 nd D2 evacuation | 19.7 | | Heat 3 rd H2 pressurization | -26 | | Endothermic heat from 3 rd H2 evacuation | 31.5 | - Hart calorimeter- no excess heat is observed - o Heat In ≠ Out; D_2 ≠ H_2 - Internal and External Controls NOT OK for D₂ but OK for H₂ ## Matrix with Pd – 1% Pd on NRL Matrix | Measured Heat Deuterium pressurization at 17:35 on 07/15/09 | | |--|-------| | Measured Heat Deuterium removal at 8:21 on 07/16/09 | | | Measured Heat of Deuterium pressurization at 13:48 on 07/16/09 | | | Measured Heat of Deuterium removal at 7:58 on 07/17/09 | 20.9 | | Measured Heat Hydrogen pressurization at 10:17 on 07/17/09 | -7.2 | | Measured Heat of Hydrogen removal at 18:02 on 07/17/09 | 13.5 | | Measured Heat Hydrogen pressurization at 8:54 on 07/18/09 | -12.9 | | Measured Heat Hydrogen removal at 15:04 on 07/18/09 | 20 | | Measured Heat Deuterium pressurization at 19:54 on 07/18/09 | -46.5 | | Measured Heat Deuterium removal at 12:29 on 07/19/09 | 20.1 | | Measured Heat Hydrogen/Deuterium Mix pressurization at 17:54 on 07/19/09 | | - Hart calorimeter- no excess heat is observed - o Heat In ≠ Out; D_2 ≠ H_2 - Internal and External Controls NOT OK for D₂ but OK for H₂ ## **Examples of set-up in GC Oven** ## **Examples of set-up in GC Oven** #### Results from GC: - o Excess other heat is observed - o Heat In ≠ Out for D_2 but equal for H_2 , $H_2 ≠ D_2$ #### Results from GC: - o Excess other heat is observed - o Heat In ≠ Out for D_2 but equal for H_2 , $H_2 ≠ D_2$ # Closer Look of a Run in the GC Reproducibility of Depressurizations # Closer Look of a Run in the GC Reproducibility of Depressurizations ## But Is there an explanation for the "other" heat repeatedly observed? # Possible Sources of Heat #1 Chemical energy in the deuterium but not in the hydrogen - Example O₂ - Argue against: - Increase pressure no proportionate increase in heat - Other palladium particles show no effect - Hypothetically could be dependant on particle size but this is not supported chemically ## **Recycling of Fill Gas** ## **Recycling of Fill Gas** ## **Recycling of Fill Gas** | Initial Pressurization to 125 PSI | -48.9J | |-----------------------------------|--------| | Recycle #1 to 122 PSI | -38.7J | | Recycle #2 to 120 PSI | -31.3J | ### **Possible Sources of Heat #2** ### **Mechanism consistent with some observations** Chemical exchange of D₂ with H2O $D_2 + H_2O \rightarrow HD + HDO$ -4.13 kJ/mole $D_2 + H_2O \rightarrow H_2 + D_2O$ -8.71 kJ/mole ### **Possible Sources of Heat #2** ### **Mechanism consistent with some observations** Chemical exchange of D₂ with H2O $D_2 + H_2O \rightarrow HD + HDO$ -4.13 kJ/mole $D_2 + H_2O \rightarrow H_2 + D_2O$ -8.71 kJ/mole # Possible Sources of Heat #2 Mechanism consistent with some observations Chemical exchange of D₂ with H2O $D_2 + H_2O \rightarrow HD + HDO$ -4.13 kJ/mole $D_2 + H_2O \rightarrow H_2 + D_2O$ -8.71 kJ/mole - Heat produced but no signature of H-D exchange in gas phase - Signature only upon removal of residual gas in Pd particle - Observed D₂ gives some HD and H₂ gives some HD - Calculations suggest for the amount of Pd present and going to D₂O (worse case) - o Ignoring the spillover effect, only 7J heat available - Using D₂O saturated Zeolite should see less heat with H₂ - Observed can be endothermic ### **Possible Sources of Heat #2** #### Some observations - Chemical exchange of D₂ with H2O - $OD_2 + H_2O \rightarrow HD + HDO$ -4.13 kJ/mole O D₂ + H₂O → HD + D₂O -8.71 kJ/mole ### **Possible Sources of Heat #2** #### Some observations - Chemical exchange of D₂ with H2O - $OD_2 + H_2O \rightarrow HD + HDO$ -4.13 kJ/mole $OD_2 + H_2O \rightarrow HD + D_2O$ -8.71 kJ/mole # Why Consider D-H Exchange as a Possible Source of Heat? Chemical exchange of D₂ with H2O $$O$$ D₂ + H₂O → HD + HDO -4.13 kJ/mole O D₂ + H₂O → HD + D₂O -8.71 kJ/mole - Can explain: - oInternal controls In <> Out - Why D₂ (exothermic) <> H₂ (endothermic) - Effect still pesent with some "dry" matrices - Make water in initial reactions $$\circ$$ PdO + D₂ \rightarrow PdDx + D₂O - OD₂O + Matrix → Hydrated Matrix - Many pressurization/depressurization cycles decreases contribution ## Conclusions - Preparing Pd nano-particles inside Zeolites is reproducible and easy - Zeolites appear to provide Pd particles of the correct dimensions - Interesting heat pattern was measured by two independent principles - Many iterations with unexpected heat present - Heat in presence of Deuterium but not Hydrogen - Chemical effect due to Hydrogen-Deuterium exchange may account for some of the anomalous heat - Hydrogen may not be best control - Requires all the species present Zeolite, Pd catalyst, water. D₂/H₂ - But simple calculations do not account for all the heat observed - Although chemistry of Zeolites is complex, because of the ease of preparation, further exploration of these systems is warranted ## Acknowledgements Funding from DTRA is gratefully acknowledged. The views, opinions, and/or findings contained in this presentation are those of the presenter and should not be interpreted as representing the official views or policies, either expressed or implied, of the Naval Research Laboratory or the Department of Defense. ## **Questions** Publication Approval Number 09-1226-3219