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Abstract
D. Cravens and D. Letts [1] have analyzed a portion (167 papers) of the published
literature reporting on D2O electrolysis experiments such as Fleischmann and
Pons’s (FP). They identify four criteria for what constitutes a “proper” FP
experiment and state that experiments that satisfy all four criteria are likely to
succeed in producing excess heat, while those that do not are likely to fail. This
paper presents results of using a Bayesian network for probabilistic analysis of
this claim. Consideration of a small subset of the papers (eight) is sufficient to
give a likelihood ratio of about 10 to 1 in favor, and this number appears to grow
generally rapidly, though not monotonically, as more papers are added to the set.

1. Introduction
Some of us, when asked why we tend to accept the reality of the Fleischmann-Pons effect,

reply with the statement:

“It’s not any one experiment; it’s the number and variety of confirmations by
independent researchers around the world.”

More generally, independent replication is considered an important step in acceptance of new
experimental results. This paper reports an attempt to model the situation using a Bayesian
network: a proposition (“The effect is real”) with a number of pertinent reports, each open to
doubt, but collectively sufficient to convert initial doubt (a low prior probability) into acceptance
(a high posterior probability, conditional on the evidence).

1.1. Cravens-Letts database

D. Cravens and D. Letts [1] report a study of 167 selected papers concerning heat generation in
electrochemical systems of the “classical” Fleischmann-Pons type: electrolytic cells with Pd
cathodes in D2O-based electrolyte. The list spans the years 1989–2007 and is non-exhaustive
mainly because papers were not included if not available in digital form. The authors rated the
papers, when possible, according to four yes/no “enabling criteria,” related to (1) cathode
loading, (2) good chemical procedures, (3) operating current densities, and (4) non-equilibrium
operation. (See the paper [1] for detailed statements of how the criteria were assigned.) In
addition they assigned a yes/no value according to whether excess power was reported or not.
They succeeded in rating 122 of the 167 papers and, after statistical analysis, concluded that
production of excess power was highly correlated with the number of criteria satisfied—very

1 The views expressed herein are those of the authors and not necessarily those of the U.S. Government, Department of Defense, Department of
the Navy, or the Naval Postgraduate School.
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likely if all four were met and less likely if fewer were met. We here report on a probabilistic test
of that claim by use of a Bayesian network.

1.2. What is the problem?

We are interested in questions such as:

“Given that in paper #1, where all 4 criteria were met, heat was observed, and in
paper #2, where only 2 criteria were met, no heat was observed, and . . . in paper
#167, . . . heat was observed, then what can we say about the probability that the
FP effect is “real”? And what is the probability that a new experiment satisfying
all 4 criteria will produce excess heat?”

In condensed-matter nuclear science in general we face multiple observations and
experimental results, and multiple conjectures and hypotheses that might explain them.

To illustrate, consider the propositions:

A: Nuclear reactions occur at low temperature in solids.

B: Excess heat is observed.

C: Helium production is observed.

D: Emission of energetic particles is observed.

Then B, C, and D are observations that can serve as evidence in support for A, considered as a
hypothesis. Likewise, consider propositions:

E: Known nuclear reactions & quantum many-body effects.

F: “New physics”.2

G: Error / deception.

H: Excess heat is reported.

Then E, F, and G are alternative hypotheses that might explain observation H. The relations
between the propositions are shown schematically in Figs. 1 and 2. These are simple examples of
Bayesian networks, which are discussed in Section 2.2 below.

Figure 1. Multiple support for a hypothesis Figure 2. Alternative explanations

2. Bayesian methods
In general there may be more complicated interrelations (as in Fig. 3 further down). We need

help in thinking quantitatively about such problems, and probability theory provides tools for

2 . . . whatever we might choose to mean by the phrase. The propositions listed here are informal, abbreviated, and intended primarily as
illustration.
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doing so. Bayes’s rule (or Bayes’s theorem) is a fundamental rule of probability, used in
updating the probability of a proposition in the light of new information. There are various
methods based on it (called “Bayesian”), including Bayesian networks, which allow representing
complex relations between propositions and making inferences concerning their probabilities.

2.1. Rules for probability

The degree of credence we accord to a proposition is (or should be) subject to change when we
learn new relevant information. In quantitative terms, if A is a proposition to which we have
initially assigned a probability P(A), and we then obtain new information in the form of a
proposition B, we update the probability of A to a quantity P(A | B), the conditional probability of
A, given B. One also uses the terms prior and posterior probabilities for P(A) and P(A | B),
respectively. The process could continue, of course. Obtaining further new information, say C,
leads to P(A | BC), and so on. In this section we collect some basic rules, prominent among them
Bayes’s theorem, for dealing with conditional probabilities. We recommend the textbook by
Jaynes [2] for (along with much else) a thorough discussion of what we here touch on lightly.

2.1.1. Bayes example problem

It is common in textbooks to introduce Bayes’s theorem with an example: medical screening.
Say you are a doctor screening for an uncommon but serious disease, where “uncommon” means

1% of people in the general population have the disease.

Also suppose there is a quite reliable test for the disease:

98% of people with the disease will test positive;
95% of those without the disease will test negative.

You give one of your patients the test as part of a routine physical, and the results come back
positive. Do you tell the patient: “There is a 98% chance that you have a serious disease”?

We express the given information symbolically:3

D: disease T: test positive
D′: no disease T′: test negative

P(D) = 0.01: probability of having the disease in the absence of test results
P(D | T): the conditional probability of having the disease, given positive test results.

We want P(D | T). We have P(D) and two other conditional probabilities:

P(T | D) = 0.98: probability of a positive test, given that the disease is present;
P(T′ | D′) = 0.95: probability of a negative test, given that the disease is absent.

2.1.2 Rules

Product rule: probability that A and B are both true

3 In general (as in the “sum rule” of Section 2.1.2) we use a notation such as A, A′, A′′, … to denote a set of propositions exactly one of which is
true. Here we assume that D and D′ are such a set (one either has the disease or one doesn’t) and likewise for T and T′ (only two test results are
possible: positive and negative). In this special case of just two alternatives, one can read the prime symbol as logical negation: not-D for D′ and
not-T for T′.
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P(AB) = P(A) P(B | A) = P(B) P(A | B)

Bayes’s rule:

P(A | B) = P(B | A) P(A) / P(B)

Sum rule:

P(B) = P(B | A) P(A) + P(B | A′) P(A′) + P(B | A′′) P(A′′) + …

where A, A′, A′′, … are an exhaustive set of mutually exclusive propositions—that
is, one must be true, but no two can be true at once.

Bayes’s theorem follows directly from the product rule: divide by P(B). The sum rule is useful
for evaluating the denominator P(B) on the right-hand side of Bayes’s rule. Some variants of
these rules can be useful; we may use

P(A | B) = P(AB) / P(B) (1)

in place of Bayes’s rule as just given, and we may use the sum rule in the form

P(B) = P(AB) + P(A′B) + P(A′′B) + … (2)

2.1.3 Solution of example problem

Applying Bayes’s rule to the previously given probabilities gives

P(D | T) = P(T | D) P(D) / P(T)
= 0.98  0.01 / P(T)

and the sum rule gives

P(T) = P(T | D) P(D) + P(T | D′) P(D′)
= 0.98  0.01 + 0.05  0.99
= 0.0098 + 0.0495 = 0.0593

where we have used the fact that P(T | D′) = 1 − P(T′ | D′) = 1 − 0.95 = 0.05. Finally, 

P(D | T) = 0.98  0.01 / 0.0593 = 0.16526

This is about 1 chance in 6, not a 98% probability. Your patient is probably healthy.
(Expensive or risky treatment is unjustified. But more testing is mandatory; ignoring a 1 in 6
chance amounts to Russian roulette.)

2.2. Bayesian networks

A Bayesian network is a graphical representation of complex relations between propositions; it
allows inferences concerning their probabilities. Figure 3 shows an example slightly more
general than the ones shown in Figs. 1 and 2.
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Figure 3. Bayesian network. Figure 4. Loop (not allowed) Figure 5. Medical
screening example

A Bayesian network consists of nodes connected by arrows. Loops, as in Fig. 4, can lead to
contradictions and are not allowed. (This means that the network is a directed acyclic graph.)
With each node is associated a “random variable” (such as A, B, C, … in Fig. 3). By calling a
variable such as A “random” we mean simply that:

(1) There is a set of possible values {a1, a2, … , an}, so that the propositions A = a1, A = a2,
…, A = an form an exhaustive set of mutually exclusive propositions; and

(2) We can talk about probabilities (perhaps conditional) of these propositions, e.g. P(A = ai),
P(B = bj | A = ai).

True-false proposition, such as D and T of the medical screening example, are included (see
Fig. 5); the set of values is just {true, false}.

Arrows indicate conditional dependence. If there is an arrow from a node X to a node Y, we
call X a parent of Y. Thus the parents of C in Fig. 3 are A and B. A variable has a probability
distribution conditional on its parents. In the case of A, B, and C, this means that conditional
probabilities P(C = c | A = a, B = b) are given for all values a, b, and c in the value sets of A, B,
and C, respectively. This generalizes in a straightforward way to any number of parents. For a
node without parents, such as A, we require the unconditional probabilities P(A = a) for each a.

Bayesian networks can be used for updating our probabilities for values of some variables
when we obtain new information in the form of values for other variables. This generalizes what
we did in the medical screening example. There, we learned the value T = true for the test result,
making it no longer uncertain (or “random”). Consequently we were able to update our
probability for D, disease, from the prior value P(D) to the posterior value P(D | T = true).
Analogously, we could suppose we learn values for some of the variables, say C and E, in the
more elaborate network of Fig. 3, and we could ask how the new information affects the
probabilities for the values of some other variable or variables, such as B.

To begin, in terms of the conditional and unconditional probabilities associated with the nodes,
we can write an expression for the joint probability distribution for the entire set of variables; for
the illustrative network of Fig. 3, this is the set of probabilities P(A = a, B = b, C = c, D = d,
E = e) that A = a and B = b and C = c and D = d and E = e, where a, b, c, d, and e range over
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their respective value sets. We show this in a shorthand notation, writing A for A = a, B for B = b,
etc., so that the desired set of probabilities is denoted by P(ABCDE); they are then given by:

P(ABCDE) = P(A) P(B | D) P(C | AB) P(D) P(E | B) (3)

In general there is one factor for each node, consisting of the associated probability expression
(conditional or unconditional). From this we can calculate other conditional probabilities such as
P(B | CE), for example: the updated probabilities for B, given that we have learned values for C
and E.

By equation (1), the alternative form of Bayes’s rule from §2.1.2, we can write:

P(B | CE) = P(BCE) / P(CE) (4)

We can get the numerator, P(BCE), by using essentially the alternative form of the sum rule,
equation (2) from §2.1.2: sum (3) over the variables that do not occur in P(BCE):

P(BCE) =  a,d P(A = a, B, C, D = d, E)

Likewise we get the denominator by summing over B as well:

P(CE) =  a,b,d P(A = a, B = b, C, D = d, E) =  b P(B = b, C, E)

And the last two equations allow us to compute the desired quotient in (4).

For more information about Bayesian networks, see the textbook by Jensen [3], for example.
There are also useful on-line tutorials by Breese and Koller [4] and by Murphy [5].

Software support is necessary for work with networks of any substantial size. For the work
reported here we took advantage of a Java applet written by Yap, Santos, et al. [6] at the
University of British Columbia and made available for download.

Figure 6. Bayesian network applet
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This allows one to draw a network by means of a graphical interface, enter conditional
probabilities in tabular form, set observed values for selected nodes, and display the resulting
probabilities for other nodes. Figure 6 shows the display for a network similar to the one in Fig.
3.

2.3. Weight of evidence

For inference about a yes/no proposition, a formulation of Bayes’s theorem in terms of odds
and likelihoods ratios can be useful. First, a bit of terminology: The quantities P(B | A), P(B | A′),
P(B | A′′), … that occur in the sum rule (§2.1.2) are called the likelihoods of A, A′, A′′, … .4 For a
pair of alternatives, A and A′, the quotient P(B | A) / P(B | A′) is called the likelihood ratio. When
these are the only alternatives, we have P(A) / P(A′) = P(A) / (1 − P(A)); this quantity is the
(prior) odds for A and denoted by O(A). Similarly, the posterior odds for A are O(A | B) =
P(A | B) / P(A′ | B).

Now write Bayes’s rule for A and for A′:

P(A | B) = P(A) P(B | A) / P(B)
P(A′ | B) = P(A′) P(B | A′) / P(B)

and divide the first equation by the second. The factors of P(B) cancel, and we get:

P(A | B) / P(A′ | B) = [P(A) / P(A′)] [P(B | A) / P(B | A′)]

The left-hand side is the posterior odds for A, the first factor on the right is the prior odds, and
the second factor is the likelihood ratio. Thus:

O(A | B) = O(A) [P(B | A) / P(B | A′)]

which we can state as:

“posterior odds = prior odds × likelihood ratio”

If the “evidence” B consists of several observations B1, B2, … that are independent in the sense
that P(B1B2, … | A) = P(B1 | A) P(B2 | A) … and P(B1B2, … | A′) = P(B1 | A′) P(B2 | A′) …, then
the equation generalizes to

O(A | B1B2, … ) = O(A) [P(B1 | A) / P(B1 | A′)] [P(B2 | A) / P(B2 | A′)] …

Taking logs of all the factors gives an additive version. Thus taking a new piece of
independent evidence Bi into account just increments the log of our odds for A by

log [P(Bi | A) / P(Bi | A′)]

which is called the weight of evidence for A provided by Bi. (See Good [7] and Jaynes
[2, pp. 91 ff.].)

If one starts with noncommittal prior odds of 1:1, evenly balanced between acceptance and
rejection of a proposition, then the likelihood ratio of the evidence gives ones posterior odds. On

4 Recall that A, A′, A′′, . . . form an exhaustive set of mutually exclusive propositions. “Likelihood” is used in a technical sense. The terminology
is unfortunate because it may give the impression that the likelihoods are conditional probabilities of A, A′, A′′, . . . , which they are not; in
particular they need not sum to 1.
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the other hand, one can view the reciprocal of the likelihood ratio as a “critical prior”: the prior
odds such that the evidence would bring us to posterior odds of 1:1. In this latter role, the
likelihood ratio can help us in assigning a numerical value to our prior odds for a preposition;
imagine a successions of independent repetitions B1, B2, … of an experiment with a given
likelihood ratio and ask how many successful outcomes would bring us to a state of uncertainty,
poised between acceptance and rejection. (See Good [7] and Jaynes [2, Ch. 5].)

Our task will be to evaluate the likelihood ratio (equivalently, the weight of evidence) for the
proposition that “the FP effect is real” provided by Cravens and Letts’s ratings of a subset of the
papers in their database.

2.4. Estimating probabilities

In the medical example we were given the values P(T | D) = 0.98, P(T′ | D′) = 0.95,
P(D) = 0.01. In practice such numbers are commonly gotten from a study, e.g. give the test to
some people known to have the disease, and observe that about 98% test positive. The numbers
are known only with some uncertainty, e.g. “The fraction of people with the disease who test
positive is in the range 0.980 ± 0.002 with probability 68%. This seems to be saying that P(T | D)
is in a certain range with a certain probability. What do we mean by the probability of a
statement about other probabilities?5

Our treatment of Cravens and Letts’s evidence will involve probabilities that are not known in
advance but are estimated from the data. To illustrate the considerations involved, we present a
simple problem.

The “biased coin” problem concerns a coin for which the probability p of heads is some
arbitrary number between 0 and 1, not known to us and not necessarily 0.5. It is not at all clear
how one could construct such an object in practice,6 so it may be better to think of a game
spinner with two sectors, marked H and T, with H containing a fraction p of the full circle (Fig.
7).

Figure 7. “Biased coin” spinner

If we spin so that the probable location of the pointer is uniformly distributed over the circle,
the probability of its showing heads is p. Now write Hp for the proposition that the size of the H
sector is p, and suppose that this unknown size was chosen at random (uniformly) between 0 and

5 The need to take systematic account of uncertainties in our information is ubiquitous and has a long history. It played a central role in Laplace’s
comarison of imperfect astronomical observations with Newtonian graviatational theory; see Jaynes [8; 2, Ch. 5].
6 We might try loading a coin by making it of two layers with lead on one side and aluminum on the other. This turns out not to be effective; see
Jaynes [2, §10.3], “How to cheat at coin and die tossing.” Jaynes shows in fact that the probability of heads is not just an intrinsic physical
property of the coin and may have little to do with quantities such as the displacement of the center of gravity of the coin from its geometrical
center.
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1 (Fig. 8). We are now dealing with continuous probability distributions; P(Hp) is a probability

density, not a discrete value, and satisfies   1 dpHP p rather than p P(Hp) = 1. Suppose we

spin once and observe a head. What is our revised probability for Hp, given E11: one head in one
trial? Bayes’s rule for continuous probability distributions gives:

P(Hp | E11) = P(E11 | Hp) P(Hp) / P(E11)
= p / P(E11)

Figure 8. Uniform prior P(Hp)

Here P(E11 | Hp) is p, because that’s what Hp says: the probability of getting a head is p. And
P(Hp) is 1 by assumption.

The continuous version of the sum rule (§2.1.2) gives

     

2/1

|

1

0

11

1

0

11









dpp

dpHPHEPEP pp

  pEHP p 2| 11  (5)

as in Fig. 9.

Figure 9. One head in one trial observed

Now the probability of heads on the next trial is:

P(“one more head” | E11) = 
1

0

P (“one more head” | E11Hp) P(Hp | E11) dp
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The first factor in the integrand is p by definition of Hp, and equation (5) gives the second. So

P(“one more head” | E11) =  
1

0

2 3/22 dpp

We can continue making trials and updating our probability distribution for Hp. Possible
results are shown in Figs. 10–12.

With the notation Emn = “m heads observed in n trials,” these represent:

P(Hp | E22) = 3p2 P(Hp | E12) = 6p(1−p) P(Hp | E24) = 30 p2(1−p)2

Figure 10. 2 heads in 2 trials Figure 11. 1 heads in 2 trials Figure 12. 2 heads in 4 trials

The general formula for m heads out of n trials is:

P(Hp | Emn) = [(n+1)!  m!(n−m)!] pm(1−p)n−m

and the formula for the probability of heads on the next trial is:

P(“one more head” | Emn) = (m+1) / (n+2).

This is Laplace’s rule of succession: assuming a uniform prior for Hp and m “successes” out of
n independent trials, the probability μ of success on the next trial is given by

μ = (m+1) / (n+2)

The successive posterior distributions peak up more and more sharply as the number of trials
increases (Fig. 13). The width of the peak is 2σ, where the standard deviation σ is given by

   3/1  n

and the mean μ is as just given. For a derivation of σ, see equation (6.35) in Jaynes [2, ch. 6].

The assumption of a uniform prior may or may not be justified, depending on available
information. But if the prior is continuous and non-zero near μ, the shape of the posterior will
often be found to resemble Fig. 13.
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Figure 13. Peak shape

3. Problem setup
The network we developed is shown in Fig. 14. Node R is the proposition of interest—roughly

speaking, “is the FP effect ‘real’?” The nodes E2, E8, … , E28 refer to the results published in the
set of papers selected for initial consideration; the subscripts are index numbers of the papers in
the Cravens–Letts [1] database. The other “E” nodes are auxiliary nodes associated with the
papers, and the “P” nodes are various probabilities to be estimated from the data by means
illustrated in §2.4.

Figure 14. Network for eight selected papers (initial configuration)
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3.1. Selected papers

Cravens and Letts [9] suggested the following eight papers for initial consideration:

# Cri Heat Citation
2 2 No R. D. Armstrong et al., Electrochimica Acta 34 (9) 1319–1322 (Sep. 1989).
8 4 Yes R. C. Kainthla et al., Electrochimica Acta 34 (9) 1315–1318 (Sep. 1989).
10 3 No N. S. Lewis et al., Nature 340 (6234) 525–530 (Aug. 17, 1989).
15 1 No D. E. Williams et al., Nature 342 (6248) 375–384 (Nov. 23, 1989).
17 4 Yes A. J. Appleby et al., Proc. First Ann. Conf. Cold Fusion, 32–43 (Mar. 1990).
18 4 Yes Y. Arata & Y.-C. Zhang Proc. Japan Acad. B 66 (1) 1–6 (1990).
26 4 Yes S. Guruswamy & M. E. Wadsworth, Proc. First Ann. Conf. Cold Fusion, 314–

327, (Mar. 1990).
28 4 Yes T. Lautzenheiser & D. Phelps, Amoco Production Company Research Report

T-90-E-02, 90081ART0082 (Mar. 1990).

The numbers under “#” are the index numbers of the papers in Cravens and Letts’s database.
The numbers under “Cri” give the number of enabling criteria satisfied by the paper. A Yes or
No under “Heat” indicates whether excess heat was reported.

3.2 Network propositions

Proposition R can also be phrased as “the experimental treatment makes a difference”. We
consider two alternatives:

 R = false:7 the probability of observing excess heat is the same (Pf) regardless of
whether all, some, or none of Cravens and Letts’s enabling criteria are satisfied. This
would imply that reported observations of excess heat are the result of error, deception,
or extraneous factors.

 R = true: the probability of observing excess heat has one of several values (P0, … ,
P4), depending on the number of enabling criteria that are satisfied.

Ei states that excess heat was reported in paper number i of the data base.

Eif states that excess heat was reported in paper number i in case R = false. Its truth value is
irrelevant in case R = true. Its conditional probability is simply the value of Pf.

Ein states that excess heat was reported in paper number i in case R = true, where n is the
number of enabling criteria met by the paper. Its truth value is irrelevant in case R = false. Its
conditional probability is simply the value of Pn.

Nodes Eif and Ein exist to simplify the expression of the conditional probabilities of Ei, rather
than for any intrinsic interest of their own. Ei is true if either (1) R and Ein are both true or (2) R
is false and Eif is true; Ei is false otherwise. The Eif and Ein nodes could be eliminated and Ei

made directly dependent on R, Pf, and Pn at the expense of expanding Table 2 below to a table
with 50 rows.

7 A statistician of the orthodox persuasion might call this alternative a “null hypothesis.”
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3.3 Network variables

Pf is the probability of excess heat being reported in case R = false.

Pn is the probability of excess heat being reported in an experiment satisfying n of the enabling
criteria (n = 0, … ,4) in case R = true.

Pf and P0, … , P4 are probabilities to be estimated from the data by means illustrated in §2.4.
Ideally they would each be described by a continuous probability density on the interval from 0
to 1. Because of practical limitations of the software, we used fairly coarse discrete
approximations.

3.4. Probability tables

The prior and conditional probabilities for the nodes of the network are specified in tabular
form.

We set the prior probability of R equal to 0.5, as shown in Table 1, giving prior odds of 1.
Consequently the posterior odds are equal to the likelihood ratio. (See §2.3.) This makes it easy
to determine the weight of evidence from the program outputs.

Table 1. P(R)

R
true false
0.5 0.5

The conditional probability of Ei is specified as in Table 2. This simply makes Ei agree with Eif

when R is false and with Ein when R is true. The actual probability values are those of Eif in the
first case and Ein in the second.

Table 2. P(Ei | R Eif Ein)

Ei

R Eif Ein true false
true true true 1 0
true true false 0 1
true false true 1 0
true false false 0 1
false true true 1 0
false true false 1 0
false false true 0 1
false false false 0 1
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The conditional probabilities of Eif and Ein are given in Tables 3 and 4. The probability of Eif,
given Pf, is by definition simply the value of Pf ; and the probability of Ein, given Pn, is the value
of Pn.

Table 3. P(Eif | Pf) Table 4. P(Ein | Pn)

Eif Ein

Pf true false Pn true false
0.1 0.1 0.9 0.1 0.1 0.9
0.3 0.3 0.7 0.3 0.3 0.7
0.5 0.5 0.5 0.5 0.5 0.5
0.7 0.7 0.3 0.7 0.7 0.3
0.9 0.9 0.1 0.9 0.9 0.1

The prior probabilities of Pf and Pn (n = 0, … ,4) are shown in Tables 5 and 6. They are all the
same: a coarse discrete approximation to a uniform distribution on the unit interval.

Table 5. P(Pf) Table 6. P(Pn)

Pf Pn

0.1 0.3 0.5 0.7 0.9 0.1 0.3 0.5 0.7 0.9
0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2

4. Results
After entering the probability tables in the nodes of the network of Fig. 14, we successively

declared “observed” values for the nodes Ei, starting with false for E2 and finishing with true for
E28. The final state of the network is shown in Fig. 15, in which display of the probability
distributions of the nodes Pf, P0, … , P4, has been enabled.

The posterior probabilities for R = true and R = false are 0.9093 and 0.0907, giving posterior
odds of 10.25. This is also the final value of the likelihood ratio, since we started with prior odds
of 1.0. The value of the likelihood ratio is plotted in Fig. 16 as a function of the number of papers
taken into account, from 1 paper (#2 only), 2 papers (#2 and #8), through 8 papers.

The likelihood ratio for R, give 1 paper, is 1.0, exactly equal to the prior value of 1.0 with no
papers at all (not plotted). With one paper, the distributions of Pf and P2 were identical—a bit
biased toward the low values, as the first paper (#2) reported no heat. There was not yet a basis
for choosing between the two. Adding a second paper (#8, reporting heat) increased the ratio to
about 1.47, and adding a third (#10, reporting no heat) made no difference. The next four,
consistently showing heat with four criteria satisfied, brought a steep increase in the likelihood
ratio to 10.025.
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Figure 15. Final configuration of network for eight selected papers

At that point the posterior distribution for P4 was strongly biased toward high values, as shown
in Fig. 15, and as one would expect. P1, P2, and P3 showed weaker and identical biases toward
low values, since in each case (1, 2, or 3 criteria met) one instance was observed, reporting no
heat. P0 was flat, unchanged from its prior, as no evidence was included bearing on the case of 0
criteria met. The distribution of Pf was relatively flat, close to its prior, as the probability for
R = false was at that point estimated as being rather small. Note that if R were definitely known
to be true, the value of Pf would be irrelevant, and we would expect it to be no different from its
prior. As an experiment, we changed the prior value for R = false to 0.99, sufficiently skeptical
that the posterior value came to about 0.91; in that case, the posterior distribution for Pf showed
an apparent peak between 0.5 and 0.6, about where the rule of succession would predict for 5
successes (heat observed) out of 8 trials.

Eight papers is a small enough sample that not too much significance should be attached to the
particular final numerical value of 10.025 for the likelihood ratio for R, though the qualitative
behavior of Fig. 16 is suggestive. Moreover, the set of eight is not a representative sample of the
data base; some were selected for historical significance. In particular, papers #10 and #15 are
accounted by Cravens and Letts [1] as “the most important papers in the field of Condensed
Matter Nuclear Science” for their early and lasting negative impact. On the other hand the
announcement by Fleischmann and Pons (#1 in the database) was omitted.
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Figure 16. Change in likelihood ratio as more and more papers are taken into account

Subsequently to presenting this material at ICCF-14 we extended our model with four
additional papers:

# Cri Heat Citation
1 4 Yes M. Fleischmann & S. Pons, J. Electroanal. Chem. 261 (2, part 1) 301–308

(Apr. 10, 1989).
30 1 No G. R. Longhurst et al., J. Fusion Energy 9 (3) 337–343 (Sep. 1990)
50 3 Yes V. C. Noninski & C. I. Noninski, Fusion Technology 19 (2) 364–368 (Mar.

1991)
70 1 No T. I. Quickenden & T. A. Green, J. Electroanal. Chem. 344 (1-2) 167–185 (Jan.

15, 1993).

The Fleischmann-Pons paper was added at the beginning of the list, and three arbitrarily
chosen papers with later dates (#30, #50, #70) were added at the end to make a total of twelve.
The extended plot of the likelihood ratio of R versus number of papers taken into account is
shown in Fig. 17. The notations across the top show for each point the number of enabling
criteria met and whether excess head was observed or not.
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Figure 17. Likelihood ratio vs. number of papers (12 total)

As with the smaller set, the first paper, though positive for heat, results in no change for the
likelihood ratio of R; the value is the prior value, 1.0. Again the trend is generally upward with
increasing steepness, but with a conspicuous glitch at the 11th paper (#50). The two neighboring
papers, #30 and #70, reported no for excess heat, yet their inclusion increased the likelihood ratio
for R. On the other hand, paper #50, though positive for heat, nevertheless decreased the
likelihood ratio for R. A possible explanation is that only one previous paper had met exactly 3
of the 4 criteria, and that one was negative for heat. This disagreement, one no and one yes for
heat, made the case “3 criteria met” appear “random” and so apparently decreased the likelihood
ratio for R. This underscores the fact that R is asking whether the experimental treatment makes
a difference. The observation of no heat when some of the criteria are not met can serve as
evidence for R just as well as the observation of heat when all are met.

It would be desirable in the future to include substantially more papers—ideally all the ones
that were successfully rated according to criteria met and presence or absence of heat. The
present scheme lumps together all papers that meet the same number of criteria; those meeting
the first two enabling criteria are counted together with those meeting the last two. It would be
desirable to consider particular subsets of the four criteria, rather than simply the count,
expanding the number of cases from 5 to 16. The ability to handle substantially more papers
might make that feasible.
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