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Observations of excess heat in the absence of commensurate 
energetic charged particles challenges local energy and 
momentum conservation, a foundation of nuclear physics.  We 
have explored models based on excitation transfer, in which 
global energy is conserved but local energy conservation is 
violated.  We present recent results on both excitation transfer 
and anomalous energy exchange within the context of lossless 
spin-boson models.  We introduce a rotation that allows us to 
isolate terms in the rotated Hamiltonian responsible for both 
processes.  Spin-boson type models augmented with loss 
appear to be sufficiently strong to account for the excess heat 
effect.   
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Claims of excess heat production in the Fleischmann-Pons experiment [1-3] 
were met with disbelief following the initial announcement of the effect in 1989 
[4].  In the controversy that followed, discussions centered on experimental 
questions of reproducibility, calorimetry, absence of energetic products 
correlated with the energy, and the initial lack of identification of an ash 
quantitatively correlated with the energy production.  Discussions centered also 
on theoretical issues, such as the low associated reaction rates expected for 
conventional deuteron-deuteron fusion reactions due to the Coulomb barrier, 
competition with the primary n+3He and p+t reaction channels, and on the 
seeming impossibility of coupling the MeV-scale nuclear reaction energy to low-
energy atomic degrees of freedom associated with the solid state environment.  

Research over the subsequent 18 years has clarified some of these issues.  
Several groups have reported good reproducibility in experiments with excess 
heat; similar positive results have been reported with very different calorimeters; 
and 4He has been detected in amounts commensurate with the excess energy 
produced (see Ref. [5] and references therein).  In the latter case, the reaction 
energy determined experimentally appears to be 24 MeV, suggesting an overall 
reaction mechanism consistent with  

 
D+D  4He + 23.85 MeV (heat)  

 
We recognize the existence of the conventional version of this reaction channel 
with 4He and an energetic gamma in the exit channel; however, there is no 
evidence for energetic gammas being produced in amounts commensurate with 
the energy production in any Fleischmann-Pons experiment.  In essence, excess 
heat in the Fleischmann-Pons experiment requires the existence of a new 
physical process, since no known nuclear reaction works this way.   

The reaction energy from a conventional nuclear reaction, and in particular 
from a fusion reaction, is expressed through energetic particles as a consequence 
of local energy and momentum conservation.  Local energy and momentum 
conservation has been a foundation of nuclear physics since the time of 
Rutherford [6], and one can find relevant expositions in modern nuclear physics 
texts [7].  Excess heat production in the Fleischmann-Pons experiment 
challenges this foundation.  Nuclear physicists since 1989 have been enthusiastic 
neither about either the Fleischmann-Pons experiment, nor about any discussion 
that includes a consideration of nuclear energy production in the absence of 
observations of energetic particles.  No nuclear physics experiment within the 
entire nuclear physics literature dating back to before 1900 is thought to work 
this way; which leads to the tentative conclusion that this is because no nuclear 
reaction can produce energy without energetic particles.   
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Such a position was adopted in the 1989 ERAB report [8], and by Huizenga 
in his book [4].  Until proven otherwise independent of the Fleischmann-Pons 
experiment, it is unlikely that the situation will change. 

All of which provides motivation for the models discussed below.  We have 
focused for several years on a class of models, which seek to address violations 
of local energy and momentum conservation, and also to address the problem of 
the conversion of a large energy quantum into a large number of smaller energy 
quanta [9-11].  We view these two issues as separate problems, as will become 
clearer in the models themselves. 

We take advantage of a quantum excitation transfer effect in order to violate 
local energy conservation, while preserving overall energy conservation.  For 
example, if two deuterons react to form 4He in such a model, the reaction energy 
is transferred elsewhere, so that there is no need for energetic particles from the 
initial four-nucleon system.  Once this excitation transfer has occurred, we still 
need to convert the large MeV energy quantum into a very large number of 
atomic scale quanta.  The basic mechanism under consideration for this is one in 
which the excitation is transferred one small energy quantum at a time in a very 
large number of interactions, including fast excitation transfer reactions to other 
nuclei, and self interactions. 

These notions already imply a set of models that can be studied, and we 
present below some results from our analysis of these systems.  The results are 
interesting in the sense that we can establish an excitation transfer effect, as well 
as an energy exchange effect (in which a large quantum is split into a large 
number of small quanta), using very simple models composed of equivalent two-
level systems and an oscillator.  We would expect such models to fall short of 
describing the real system because they do not include loss effects.  When we 
augment such models to include loss, we find that the excitation transfer and 
energy exchange effects become much stronger.  Hence, models composed of 
two-level systems and an oscillator that are augmented with loss, appear to be 
candidates to describe the excess heat effect in Fleischmann-Pons experiments. 

 
 

Anomalous Energy Exchange 
    
We consider first the anomalous energy exchange effect.  We consider a 

two-level system with a large transition energy ∆E coupled to a simple harmonic 
oscillator with a small characteristic energy 0ω , with linear coupling.  Our 
focus is on the rate at which energy is exchanged between the two systems.  For 
this model, we adopt a spin-boson Hamiltonian given by 

 



 

ACS9 Printed 6/20/2011  4 

 ( )† †
0

ˆˆ 21ˆ ˆ ˆ ˆ ˆ      
2

xz ssH E a a V a aω  = ∆ + + + + 
 



 

 (1) 

 
In writing this Hamiltonian, we use pseudospin operators ˆzs and ˆxs  to describe 
the two-level system, and creation and annihilation operators for the simple 
harmonic oscillator.  The coupling between the two systems has an interaction 
strength V.  Models of this kind have been considered in the literature since the 
early work of Bloch and Siegert [12].  Models for the energy shifts and 
resonance conditions for this problem have been discussed in the literature over 
the years (see [13-17]). 

A direct computation of energy levels from this Hamiltonian leads to an 
empirical parameterization of the energy levels according to 

 

 ( ), 0
1  
2n mE E g m nω  = ∆ + + 

 


 (2) 

where the dressed two-level system energy ( )E g∆  depends on the interaction 
strength and on the number of oscillator quanta through the dimensionless 
coupling strength g, which we define according to 

 

   V ng
E

=
∆

 (3) 

The relation between ( )E g∆  and g is roughly 

 ( ) 2  1 8E g g E∆ = + ∆  (4) 
as illustrated in Figure 1.  One sees that this empirical parameterization is in 
reasonable agreement with the results from numerical calculations. 
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Figure 1 – Plot of ( )E g∆  as a function of g for 011E ω∆ = 

.  Result from 

numerical solutions – black line; empirical result 21 8g+ – grey line. 
 
Level Anticrossing 

 
We can study energy exchange between the two systems by focusing on the 

level splittings in the vicinity of an anticrossing.  Consider a resonance between 
two states that differ by one unit of excitation in the two-level system quantum 
number m, and by an odd number of oscillator quanta n 

 

 
( )

( )

,1/ 2 0

, 1/ 2 0

1 1  
2 2

1 1  
2 2

n

n n

E E g n

E E g n n

ω

ω+∆ −

 = ∆ + + 
 

 = − ∆ + + ∆ + 
 





 (5) 

These two states anticross when their energies are equal, which occurs when 
 

 ( ) 0  E g n ω∆ = ∆ 
 (6) 
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Figure 2 – Level splitting at the level anticrossing as a function of the 
dimensionless coupling constant g.  Calculations are presented for 

011E ω∆ = 
, 021 ω , and 31 0ω . 

 
In Figure 2 we illustrate the energy splitting that occurs at the level 

anticrossings as a function of the dimensionless coupling strength for 
calculations with 0/E ω∆ 

=11, 21, and 31.  In the case of 011E ω∆ = 
(the top 

curve in Figure 2) that resonances occur for n∆  values of 13, 15, which are 
indicated by the solid circles on the curve starting from the left.  For example, a 
resonance for the conversion of one unit of two-level system excitation for 13 
oscillator quanta occurs near g=0.22, with an associated level splitting of about 
10-5 E∆ .   

 
 

Dynamics 
 
In the vicinity of the anticrossing, the eigenfunctions are composed 

primarily of a mixture of the two states which anticross.  On resonance, the 
mixing involves a 50-50 admixture of the two states, in which case the 
probability oscillates sinusoidally between the two states at a frequency related 
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to the level splitting at the anticrossing.  For example, if we initialize the system 
in state φn,1/2, then the subsequent occupation probabilities evolve according to 

 

 
( )

( )

2 min
,1/ 2

2 min
, 1/ 2

  cos
2

  sin
2

n

n n

E tp t

E tp t+∆ −

∆ =  
 

∆ =  
 





 (7) 

In these oscillations, the system is exchanging energy between the two-level 
system, which has a large transition energy, and the oscillator, which has a small 
characteristic energy.  In the results shown in Figure 2, the rightmost point on the 

031E ω∆ = 
curve is associated with an exchange of 85 oscillator quanta for a 

single dressed two-level system quantum. 
 
 
Discussion   
 

This simple model illustrates that the simplest possible model of a single 
two-level system coupled to an oscillator exhibits an anomalous energy exchange 
effect, and that this can be demonstrated simply through a direct calculation.  In 
order to see this effect in the spin-boson model, the dimensionless coupling 
constant g needs to be at least of intermediate strength.  The models and 
solutions discussed here involved only a single two-level system coupled to an 
oscillator.  Very similar results are obtained for a set of matched two-level 
systems, as long as n is large. 

 
 

Rotation 
 
It is possible to perform a rotation of the initial Hamiltonian that produces a 

dressed version of the problem in which the anomalous energy exchange effect 
can be studied more cleanly.  We can rotate to eliminate the interaction term to 
first order to obtain [10] 

 
 ' †

0
ˆ ˆ ˆ ˆ ˆ ˆ    H UHU H V W= = + +  (8) 

Here, 'Ĥ is the rotated Hamiltonian, Û is a unitary operator, and the three 
operators on the right are terms that we interpret as an unperturbed part of the 
Hamiltonian ( 0Ĥ ), and two perturbations.  The unitary operator that 
accomplishes this rotation is 
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 ( )†ˆ ˆ2 ˆˆ   exp  arctan yV a a s
U i

E

  +  =  ∆    
 (9) 

The unperturbed part of the rotated Hamiltonian can be written as 
 

 
2

2 2 2 2
0 0 2

ˆ
  8   zs dH E V y y

dy
ω

 
= ∆ + + − + 

 




 (10) 

In writing this, we have used  
 

 
†ˆ ˆ

  
2

a ay +
=  (11) 

 
The perturbation V̂ is given by 

 

0
2 2 2 2 2 2

ˆ22 1 1ˆ   
2 1 8 / 1 8 /

ysV d dV i
E V y E dy dy V y E

ω  
= + ∆ + ∆ + ∆ 





(12) 

 
We may write for Ŵ  

 

 
22

0 22 2 2 2

ˆ21ˆ   
1 8 /

ysVW
E V y E

ω
 

=  ∆    + ∆ 




 (13) 

 
 
Energy levels 

 
The rotation is useful for a number of reasons.  For example, we can solve 

the rotated 0Ĥ  problem numerically with the result that the energy levels are 
given approximately by the parameterization of equation (2).  In the event that 
the number of oscillator quanta is very large, then one can adopt a simple 
approximation for the eigenfunctions using SHO wavefunctions of the form 

 
 ,   ,n m n s mφ =  (14) 

This is an approximation since the exact eigenfunctions of 0Ĥ  have a spread in 
n.  A variational estimate for the energy eigenvalues can be obtained using 
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2 2 2
, , 0 , 0

1    8
2n m n m n mE H n E V y n m nφ φ ω  = = ∆ + + + 

 


 (15) 

This is consistent with 
 
 ( ) 2 2  1 8 /E g E n g y n n∆ = ∆ +  (16) 
 

which represents an improvement over our empirical dressed energy formula 
above.  This result is sufficiently accurate that one could not distinguish it from 
the numerically exact result of Figure 1 if it were added to the plot.  This result is 
consistent with the series expansion in the large n limit reported in [15], and with 
the expansion reported in [17].  We have recently discussed this in [18]. 
 
 
Anomalous energy exchange in the rotated problem 
 

The energy levels of the rotated 0Ĥ  problem do not anticross, which is 
interesting because whatever is causing the level splitting at the anticrossing 
must be contained in the perturbations.  We can develop a two state 
approximation in the rotated frame to describe the level splitting (and hence the 
associated dynamics).  The associated eigenvalue problem can be written as 

 
( )

( )

0 ,1/ 2 , 1/ 2
1 1

2 2
, 1/ 2 ,1/ 2 0

1 ˆ
2 2

  
1ˆ

2 2

n n n

n n n

E g
n V

c c
E

c cE g
V n n

ω φ φ

φ φ ω

+∆ −

+∆ −

∆  + +       =    ∆     − + + ∆ +  
  





(17) 

 
The level splitting on resonance is given by 
 

 min ,1/ 2 , 1/ 2
ˆ  2 n n nE Vφ φ +∆ −∆ =  (18) 

 
Results from this approximation are illustrated in Figure 3.  One sees that the 
V̂ perturbation combined with a simple two state model leads to good agreement 
with numerical solutions of the initial Hamiltonian.  We can understand 
anomalous energy exchange in this problem simply as arising from first-order 
transitions in the rotated frame (as discussed in [19]). 
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Figure 3 – Level splittings computed from a direct numerical solution of some of 
the resonances from the original Ĥ problem – solid circles, and from a WKB 
approximation in the rotated 0Ĥ  problem to the matrix element – open circles.  

The parameters used in this calculation were 031E ω∆ = 
and 810n = . 

 
Discussion 
 

We have found the rotated frame to be quite useful in understanding the 
systematics of the energy levels of the full problem, as presented here, and also 
in more extensive results that we do not have room to discuss.  In addition, the 
level splittings can be understood simply in terms of matrix elements of one of 
the perturbations in the rotated version of the problem.  The other perturbation 
gives a small energy shift that is not of interest in our discussion here.  
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Excitation Transfer 
 

We can use a similar model to explore excitation transfer.  In this case, we 
couple a pair of two-level systems to an oscillator, which is accomplished using 
the Hamiltonian 
 

 

( ) ( )

( )
( )

( )
( )

1 2
†

1 2 0

1 2
† †

1 2

ˆ ˆ 1ˆ ˆ ˆ       
2

ˆ ˆ2 2ˆ ˆ ˆ ˆ                         

z z

x x

s sH E E a a

s sV a a V a a

ω  = ∆ + ∆ + + 
 

+ + + +



 

 

 (19) 

 
The energy levels in this case can be approximated by 
 

 ( ) ( )
1 2, 1 1 1 2 2 2 0

1  
2n m mE E g m E g m nω  = ∆ + ∆ + + 

 


 (20) 

 
Where ( )1 1E g∆  and ( )2 2E g∆  are dressed excitation energies increased just as 
before.  Here, there are two dimensionless coupling constants g1 and g2 
 

 1 2
1 2

1 2

              V n V ng g
E E

= =
∆ ∆

 (21) 

 
Excitation transfer can occur in this model when the dressed excitation 

energy of one two-level system matches the dressed excitation energy of the 
other, to within an even number of oscillator quanta 
 

 ( ) ( )2 2 1 1 0  E g E g n ω∆ −∆ = ∆   (22) 
  
In Figure 4 we show level splittings associated with excitation transfer in the 
case where 1 053E ω∆ = 

 and 2 051E ω∆ = 
, with 2n∆ = − .  In this 

calculation, we scan g1, and search to find a g2 which gives a resonance.  At the 
level anticrossing the two states mix, and can be described approximately using a 
two-state approximate as we did above.  If the system is initialized at t=0 in a 
state φn,-1/2,1/2, then the system evolves according to  
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Figure 4 – Level splittings at the anticrossings for excitation transfer for 

1 053E ω∆ = 
and 2 051E ω∆ = 

with 2n∆ = −  and 310n = .  Results are 

presented for direct calculations with Ĥ  as given by Equation (19) – open 
circles; and using perturbation theory from rotated frame solutions – solid line. 

 
 

( ) ( )2 2min min
, 1/ 2,1/ 2 ,1/ 2, 1/ 2  cos               sin

2 2n n n
E t E tp t p t− +∆ −

∆ ∆   = =   
    

(23) 

 
These solutions illustrate the associated coherent dynamics, and oscillation 
frequency is determined by the level splittings. 
 
 
Rotation 
 
We can rotate to eliminate the coupling terms to first order as before, leading to 
a rotated Hamiltonian of the form [10] 
 

 ' †
0 12

ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ    H UHU H V W V= = + + +  (24) 
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Here, the unperturbed rotated Hamiltonian 0Ĥ  is given by 

 
( ) ( )1 2 2

2 2 2 2 2 2 2
0 1 1 2 2 0 2

ˆ ˆ
  8   8   z zs s dH E V y E V y y

dy
ω

 
= ∆ + + ∆ + + − + 

 


 

(25) 

 
The perturbations V̂ and Ŵ  are simple generalizations of the ones we 
encountered previously.  More interesting is the perturbation 12V̂  that mediates 
excitation transfer processes, for which we may write 
 

 
( )( )

( ) ( )1 2
1 2

12 0 2 2 2 2 2 2
1 2 1 1 2 2

2 21ˆ   2
1 8 / 1 8 /

y ys sV VV
E E V y E V y E

ω=
∆ ∆ + ∆ + ∆



 

 (26) 

 
The level splittings in this case can be approximated using the eigenfunctions of 
the unperturbed rotated Hamiltonian 0Ĥ  according to 
 

 min , 1/ 2,1/ 2 12 ,1/ 2, 1/ 2
ˆ  2 n n nE Vφ φ− +∆ −∆ =  (27) 

 
One can see good agreement between this expression and level splittings 
computed from the original problem in the results presented in Figure 4.  We 
have found similar agreement as long as the anticrossings are not disrupted by 
energy exchange resonances, which is where a two-state approximation would no 
longer be valid. 
 
 

Excitation Transfer and Energy Exchange 
 
Models relevant to excess heat production in the Fleischmann-Pons experiment 
must implement both excitation transfer and anomalous energy exchange.  We 
can develop very simple models that accomplish this to some degree by taking 
advantage of the simple Hamiltonian for a pair of two-level systems given above.  
In this case, we first isolate an energy exchange resonance for the second two-
level system (through appropriate choices of 2E∆  and 2g ), and then select 
parameters for the first two-level system for which an excitation transfer 
resonance exists, but for which anomalous energy exchange is weak.  In general, 
the coupling strength for one process will not match the coupling strength for the 
other.  In most cases, they can be matched by varying the oscillator excitation n, 
since the anomalous energy exchange coupling remains approximately constant 
in n while the excitation transfer coupling varies approximately as inverse n.  We 
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are motivated to match the coupling strength so that we will be able to solve for 
the dynamics, and so that we will be able to see both effects present clearly in the 
solution. 

Let us consider a specific example.  Suppose that we first (arbitrarily) select 
2 041E ω∆ = 

, with 2 0.430287g = at which an energy exchange resonance 

occurs (in the rotated problem) in which ( )2 2 063E g ω∆ = 
with a level splitting 

of 10
01.78 10  / 2ω−× 

. We then (also arbitrarily) select 1 045E ω∆ = 
 and 

1 0.308606g = , which causes the first two-level system to match the second 

with the exchange of four oscillator quanta:  ( )1 1 067E g ω∆ = 
.  It is possible to 

match the excitation transfer level splitting to the energy exchange level splitting 
(in a rotated frame calculation) using 67.72 10n = × ; which will allow us to 
construct an easily solvable dynamics problem as mentioned above.   Energy 
exchange does not occur significantly with the first two-level system in this case, 
since with these parameters the energy splitting associated with energy exchange 
is lower by a factor of 6700 than the energy splitting associated with excitation 
transfer. 

Under such conditions that the excitation transfer coupling is matched to the 
energy exchange coupling, with resonances occurring for both processes 
independently, then we can develop analytic dynamical solutions 
 

 

( ) ( )

( ) ( )

( ) ( )

2
min

4,1/ 2, 1/ 2

2
min

, 1/ 2,1/ 2

2
min

63, 1/ 2, 1/ 2

1+cos E / 2
  

2

sin / 2
  

2

1 cos E / 2
  

2

n

n

n

t
p t

E t
p t

t
p t

− −

−

+ − −

∆ 
=  

 

∆ 
=  

 

− ∆ 
=  

 







 (28) 

 
These dynamics are illustrated in Figure 5.  In this example, we start with only 
the first two-level system excited (all states in this discussion are in the rotated 
frame).  The system then transfers excitation (and four oscillator quanta) so that 
only the second two-level system is excited.  Finally, the excitation of the second 
two-level system is transferred to the oscillator, so that neither two-level system 
is excited.  The dynamics is coherent in this example, so that the system then 
proceeds to cycle back, and then repeat. 
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Discussion 
 

The importance of this model is that it illustrates clearly within the context 
of a slightly generalized spin-boson model (now with a pair of two-level 
systems) that the basic dynamics needed for describing a new physical process is 
present.  We have excitation transfer; we have anomalous energy exchange; and 
the resulting dynamics is coherent.   

ω0 t

0 1 2 3 4 5 6

p j
(t)

0.0

0.2

0.4

0.6

0.8

1.0

p1 p3

p2

 
 
 
Figure 5 – Probabilities for excitation transfer followed by energy exchange 
under conditions where all states are degenerate in the absence of coupling, and 
when the coupling strengths are matched.  In the first state (with probability p1), 
only the first two-level system is excited; in the second, only the second two-level 
system is excited; and in the third, neither two-level system is excited.  The 
frequency ω0 in this case is min / 2E∆ 

. 
 
 

Models Augmented with Loss 
 

The nice feature of the spin-boson type models presented above is that the 
system is sufficiently simple that we can isolate the excitation transfer 
mechanism, the energy exchange mechanism, and develop idealized models 
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illustrating the dynamics alone or in combination.  It is also possible to extend 
these models to include collections of two-level systems in order to understand 
how the added coherence impacts the system.   

However, these models seem to fall short of what is needed to account for 
excess heat production in the Fleischmann-Pons experiment, primarily since the 
associated rates are very small under conditions where 0/E ω∆ 

 is greater than 
106.  In essence, even though these models exhibit excitation transfer and energy 
exchange mechanisms, the effects are too weak in these models to do what is 
needed to be relevant to the excess heat problem.  Something is missing.   

 
 

Excitation transfer using perturbation theory 
 

Consider first the situation in the case of excitation transfer.  We can 
develop an approximate analytic expression for the energy splitting using 
perturbation theory.  We consider a finite basis approximation with six basis 
states corresponding to  

 

 
1 2

3 4

5 6

  ,1/ 2 , 1/ 2               1 , 1/ 2 , 1/ 2

  1 , 1/ 2 , 1/ 2        1 ,1/ 2 ,1/ 2

  1 ,1/ 2 ,1/ 2             , 1/ 2 ,1/ 2

n s s n s s

n s s n s s

n s s n s s

φ φ

φ φ

φ φ

= − = − − −

= + − − = −

= + = −

 (29) 

  
We assume that φ1 and φ6 are resonant in the absence of coupling 
[ ( ) ( )1 1 2 2E g E g∆ = ∆ ].  The finite basis equations for the expansion coefficients 
c1…c6 can be written as 
 

 

1 1 1 1 2 1 3 2 4 2 5

2 2 2 1 1 2 6

3 3 3 1 1 2 6

4 4 4 2 1 1 6

5 5 5 2 1 1 6

6 6 6 2 2 2 3 1 4 1 5

  1

  

  1 1

  

  1 1

  1 1

Ec H c V nc V n c V nc V c

Ec H c V nc V nc

Ec H c V n c V n c

Ec H c V nc V nc

Ec H c V n c V n c

Ec H c V nc V n c V nc V n c

= + + + + +

= + +

= + + + +

= + +

= + + + +

= + + + + + +

 (30) 

 
We can eliminate the interior states φ2 through φ5 to obtain a reduced set of 
equations of the form 
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 ( ) ( )
( ) ( )

1 1 1 1 1 16 6

6 6 6 6 6 61 1

  

  

Ec H c E c V E c

Ec H c E c V E c

= +Σ +

= +Σ +
 (31) 

 
The level splitting under resonant conditions in this model is 
 

 ( ) ( )min 16 61  2E V E V E∆ =  (32) 

 
An explicit calculation produces the result in this case that 
 

 
( ) ( )

( ) ( )

16 61 1 2
2 3 4 5

0 1 2
2 2

1 0

1 1    

2             

n n n nV E V E VV
E H E H E H E H

VV
E

ω
ω

 + +
= = + + + − − − − 

≈
∆ −





 (33) 

 
This approximation gives good results for the level splitting associated with 
excitation transfer in the limit of small g1 and g2. 
 
 
Inclusion of loss effects into the model 
 

In the intermediate states φ2 and φ3 above, both of the two-level systems are 
unexcited; hence, the coupled quantum system has available an energy E which 
is much greater than either of the basis state energies H2 and H3.  In this case, if 
there exist loss channels for the oscillator at decay energies near the dressed two-
level system energies, one would expect the system to undergo incoherent decay 
to these states.  The existence of such decay modes has a dramatic impact on the 
model, which we need to include.   

To do so, we augment the Hamiltonian to include loss 
 

 

( ) ( )

( )

( )
( )

( )
( )

1 2
†

1 2 0

1 2
† †

1 2

ˆ ˆ 1ˆ ˆˆ ˆ        
2 2

ˆ ˆ2 2ˆ ˆ ˆ ˆ                         

z z

x x

s s iH E E a a E

s sV a a V a a

ω  = ∆ + ∆ + + − Γ 
 

+ + + +





 

 

 (34) 

 
   
Here, the spin-boson model that we have been considering has been augmented 
with a loss term that implements the effect under discussion.  For a more 
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complete discussion of loss mechanisms and the development of relevant loss 
models, see Hagelstein and Chaudhary [10].    
 
 
Enhancement of excitation transfer  
 
With the inclusion of loss terms in the model, the model undergoes qualitative 
changes.  We can see this in the modification of the perturbation theory for 
excitation transfer discussed above.   Let us now include loss for states φ2 and φ3, 
which we can do in a simple way by using a constant loss model.  We write for 
these basis states 
 

 
2 2 2 1 1 2 6

3 3 3 1 1 2 6

  
2

  1 1
2

iEc H c V nc V nc

iEc H c V n c V n c

Γ = − + + 
 

Γ = − + + + + 
 





 (35) 

 
When these states are eliminated, we still recover a reduced two-state model; 
however, the indirect coupling coefficients are now changed.  We may write 
 

( )16 1 2
2 3 4 5

1 1  
/ 2 / 2

    

n n n nV E VV
E H i E H i E H E H
 + +

= + + + − + Γ − + Γ − −  

 

In the event that the loss term becomes very large (Γ→∞ ), then 
 

 ( ) ( )
( ) ( )

1 2 1 1
16 2 2

1 0

2
  

VV E g n
V E

E ω

∆
≈ −

∆ − 

 (36) 

 
This is orders of magnitude larger than what we found above in the lossless 
version of the model.  We see that the inclusion of loss breaks the destructive 
interference that was initially present, and that is the reason.  
 

 
Discussion and Conclusions 

 
Our discussion has focused primarily on simple spin-boson type models that 

illustrate excitation transfer and anomalous energy exchange effects.  These 
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effects are of interest to us in general since they are required in the development 
of models for excess heat in the Fleischmann-Pons experiment.   

We require the excitation transfer mechanism in order to violate local 
energy conservation (but retain global energy conservation) in the initial step of 
the reaction.  Two deuterons interact to make 4He, exchanging one or more 
phonons in the process, with the reaction energy transferred elsewhere.  The 
coupling in this case is weak, since the transition is hindered by the presence of a 
Gamow factor due to coupling through the Coulomb barrier.   

We require the anomalous energy exchange mechanism since there are no 
energetic particles observed commensurate with the energy produced.  This 
energy exchange mechanism works through the exchange of a single oscillator 
quantum in association with every interaction (excitation transfer steps, or self-
interaction steps, within the second set of equivalent two-level systems).  It 
accomplishes the exchange of a large energy quantum associated with the two-
level systems into a large number of low energy quanta associated with the 
oscillator.  Both the excitation transfer effect and the anomalous energy 
exchange effect involve coherent dynamics within the models presented here, 
and within a larger set of models that we have investigated so far. 

The lossless models are of interest as we have mentioned previously since 
we are able to set up simple models that exhibit each effect individually or both 
together.  We are able to isolate the specific perturbation in the rotated 
Hamiltonian that mediates excitation transfer, and also the specific perturbation 
that mediates anomalous energy exchange.  The effects can be studied in terms 
of direct solutions of the initial spin-boson type of Hamiltonian Ĥ ; from 
numerical and approximate solutions of the rotated unperturbed Hamiltonian 

0Ĥ ; using the WKB approximation on the rotated problem; and through other 
methods as well.  For example, in the text we discussed briefly an example in 
which we are able to develop an analytic solution for a problem in which 
excitation transfer is followed coherently by anomalous energy exchange where 
a total of 67 oscillator quanta make up the dressed transition energy of the first 
two-level system. 

The lossless version of the problem results in simple toy models that we can 
analyze as we please, although it is probably clear from the specific examples 
that we considered that these models fall short of what is needed for modeling 
excess heat production.  These toy problems also require very precise resonances 
to be present for any of the effects to occur, which seems not to be consistent 
qualitatively with excess heat observations.   

Augmenting the models with loss changes things dramatically, as we have 
discussed briefly in the case of excitation transfer.  The rate at which excitation 
transfer occurs in the lossy models is greatly enhanced, and also the rate at which 
anomalous energy exchange occurs is similarly enhanced.  Lossy models can 
show both effects readily, even without resonant conditions being satisfied.   
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To connect these models to excess heat production experiments (in PdD), 
we identify a molecular D2 state in the vicinity of a host atom vacancy as the 
upper state of the first two-level system(s), and 4He with the lower state.  The 
lower state of the second two-level system(s) we identify with ground state 
nuclei present in the host.  Experiment so far does not make clear what excited 
nuclear states should be identified with the upper state of the second two-level 
system(s).  Theoretical arguments point to excited states composed of a neutral 
particle and daughter; for example, a neutron plus 3He in the case of a 4He 
ground state; or 106Pd plus a tetraneutron in the case of a 110Pd ground state.  
Such excited states are favored due to the ability of the lattice to exchange 
phonons in transitions from the ground state.  However, it remains to establish 
that such states can be stabilized sufficiently for the schemes under discussion to 
work properly. 
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