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Abstract

A 4-space Dirac theory, which gives the same transition energies as the standard model, predicts specific distributions of virtual
electrons and positrons accompanying bound electrons. If potential barriers are viewed stochastically, it seems possible that this has
implications for LENR.
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1. Introduction

Those who seek a theoretical model for LENR face an immediate question. Does the explanation require an entirely new
effect, lying outside currently accepted theory, or does it hinge on a hitherto overlooked consequence of the standard
model? Given the complexities of the environments in which phenomena thought to be LENR are observed, the latter
may seem more likely. Nevertheless, this paper presents an unconventional form of QED for the consideration of LENR
researchers, in the hope that it may lead to theoretical progress.

Little-known versions of QED, known collectively as parametrized relativistic quantum theories [1,2], have for
decades been investigated intermittently by researchers looking for models that clearly avoid any suggestion of a
preferred frame of reference. In these models, the space-time coordinates Xλ = (xk, ct) are all on an equal footing,
i.e. both spatial position and time are regarded as observables. An invariant parameter (called τ below), corresponding
to the proper time of classical relativity, is used instead of t to describe the evolution of the wave function, which in the
spin- 1

2 theory proposed by the author [3] is a bispinor ψ satisfying a 4-space Dirac equation (Eq. (2)) that generalizes
the conventional one.

As far as nonstandard QED is concerned, the first requirement is that its predictions must be extremely close –
perhaps in many respects identical – to those of the standard model. For example, even a small departure from the
energy levels of standard Dirac theory would immediately rule it out. Although the Dirac theory described below
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allows solutions in which the proper mass m0 - an observable in the 4-space formulation – is not sharp, it also gives
stationary solutions – eigenstates of both energy and proper mass – that are formally identical to those of conventional
Dirac theory, and imply the same transition energies. However, the 4-space solutions (including those for a Coulomb
potential) generally require a modified interpretation of their wave functions, because the 4-space picture includes
contributions from both electrons and positrons, as follows.

The invariant ψ†(iγ 4)ψ ≡ F(X, τ ) is the expected space–time charge density, and the 4-vector
−ψ†γ 4γψ ≡ J(X, τ ) is the expected particle current, so that J 4 = ψ†ψ ≥ 0 implies flow in the positive time
direction. Thus F = F1 − F2, where F1 and F2 are electron and positron densities, and J is the sum of the particle
and antiparticle currents, which are assumed to have a common 4-velocity U given by cJ = (F1 + F2)U. A second
invariant, Q ≡ ψ†γ 0ψ , where γ 0 ≡ −iγ 1γ 2γ 3, is related to F and J by J · J = −(F 2 + Q2). It follows [3] that

F1 =
(√

F 2 + Q2 + F
)

/2,

F2 =
(√

F 2 + Q2 − F
)

/2. (1)

The integrals of F1 and F2 over space–time do not generally represent whole numbers of charges, and we take this to
mean that the expected 4-space densities may include contributions from virtual pairs, though usually at a very low
level. We note that F2 = 0 ⇔ Q = 0, and F1 = F2 ⇔ F = 0. We also find that F1 and F2 are interchanged by time
reversal, as one might expect for electron and positron densities.

Later we use the Dirac representation, with its characteristic large and small components in a bound state: we then
find that Q and (therefore) F2 are normally small. However, in bound states Q increases with Z, giving rise to an
increasing expected density of virtual pairs, and the model suggests pair creation when αZ is sufficiently close to 1. At
the other extreme, a free particle has Q = F2 = 0. Loosely speaking, Q measures the extent to which electromagnetic
fields are producing virtual electrons and positrons - the effect increases with field strength. (Though as will be clear
below, this does not mean that the electron and positron densities come separately from the large and small components
of ψ .) Further details are given in [3,4], and the model has been illustrated by applying it to Klein’s paradox [5].

2. Some General Results

The proposed 4-space Dirac equation is in general

γ ·
[
∂ −

(
ie

h̄c

)
�

]
ψ =

(
i

c

)
∂ψ

∂τ
, (2)

where the 4-component spinor ψ is a function of the space–time coordinates Xλ = (xk, ct) and the invariant
parameter τ . Some of the conventions used here are those of [3]; in particular, the Lorentz metric tensor is ηαβ =
diag(1, 1, 1, −1). The chiral representation was used in [5], but the usual Dirac representation is better suited to the
present purpose. In [3], m was used for proper mass, but m0 is employed here.

The 4-space theory has a proper mass operator m̂0 = (−ih̄/c2)∂/∂τ , and imposing the condition for sharp proper
mass, m̂0ψ = m0ψ , we reduce (2) to the conventional form



A. B. Evans / Journal of Condensed Matter Nuclear Science 2 (2009) 7–12 9

γ ·
[
∂ −

(
ie

h̄c

)
�

]
ψ = −

(
m0c

h̄

)
ψ, (3)

where ψ = µ(X)eim0c
2τ/h̄.

In the 4-space formulation, energy–time uncertainty is put on the same basis as that relating momentum and
position, and so a particle that is not in an eigenstate of energy has a non-uniform distribution in time. On the other
hand, eigenstates of proper mass give distributions that are independent of τ . To be realistic, therefore, eigenstates of
proper mass must also be eigenstates of energy – otherwise we get a non-uniform distribution in time that does not
move forward in time as τ increases. We therefore now suppose that

ψ = ν(x)ei(E0τ−Et)/h̄. (4)

where ν depends only on the spatial coordinates xk , as indicated.
In the Dirac representation, if ψ is split into 2-component spinors ξ and η, it is found that the fundamental invariants

defined above are

F = ξ†ξ − η†η; Q = ξ†η + η†ξ. (5)

Adopting the usual convention that ξ and η are respectively the large and small parts of ψ , we can write η ∼ αZξ .
Provided Z is not too large, we shall therefore have Q � F , so that the electron and positron densities in Eq. (1) give

F1 ≈ F ; F2 ≈ Q2/4F. (6)

But (5) gives space–time densities, whereas we want the expected spatial density of charge. A self-consistent
formulation requires [5] that in stationary states the spatial density is FU4/c , where U is the 4-velocity of a spatial
frame in which the state is stationary. Hence the expected spatial charge density of a stationary 4-space model in its
preferred reference frame is just F(x) . However, this in general is different from the usual expected charge density,
which is

J 4 = ψ†ψ = ξ†ξ + η†η, (7)

and so a renormalization of ψ is needed: integrating over all space,∫
F(x) d3x = 1. (8)

3. The Ground-State Solution

While it is perhaps premature to devote much space to the details of specific states, it may be worth while to look at
the ground state of a single electron bound to a nucleus of charge Z. We can omit the factor ei(E0τ−Et)/h̄ (see (4)), and
specify the wave function as follows:

ξ1 = f (r),

ξ2 = 0,

η1 = ε f (r) cos θ,

η2 = ε f (r) sin θ eiφ, (9)

ε = β

1 + γ
= 1 − γ

β
, (10)
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Figure 1. P , the space integral of the expected ground-state positron density, plotted against β = αZ.

where β = αZ and γ = √
1 − β2. Here we have the usual ground-state radial distribution function f (r), of the form

f (r) = Krγ−1e−λr , (11)

where K is a normalization constant and λ = βm0c/h̄. See, for example, [6], p.79 (where c = h̄ = 1), or for more
details, [7], p.69. The normalization (8) implies that

4π(1 − ε2)

∫ ∞

0
f 2(r) dr = 1. (12)

Using the relations above, we find that the expected positron density (along with the balancing part of the electron
density) is

F2 = f 2(r)

√
1 − β2 sin2 θ − γ

γ (1 + γ )
. (13)

For small β this gives F2 ≈ 1
4β2f 2(r) cos2 θ , implying concentration around the polar axis. If we expand F2 in powers

of β, the second term is of order β4, and so the lowest approximation is a good one until Z becomes quite large.
For the ground state, using F (as in (5)) instead of J 4 (as in (7)) makes no difference to the expected net charge

density, because in this case ξ†ξ and η†η differ only by a constant factor. Nevertheless, the ground state predicted by the
present 4-space model is different from that of conventional first-quantized Dirac theory, in that it already accommodates
positrons. Having normalized F , we can use the integral of the expected positron density, i.e. P(β) = ∫

F2 d3x (over
all space), to indicate the cumulative departure from standard predictions of charge distribution. The result (using
γ = √

1 − β2, as above) is

P(β) = 1

4

[
1

γ
+ γ

2β
ln

(
1 + β

1 − β

)
− 2

]
. (14)

When β is small, P(β) ≈ β2/12. Although P(β) diverges as β ↑ 1, it remains relatively small until β reaches about
0.6, as the the graph (Fig. 1) illustrates. Hydrogenic uranium (U91+) has β ≈ 0.67, P ≈ 0.06.

By increasing Z, we eventually reach a singularity when β ↑ 1. Although one knows that it must be preceded by pair
creation in an intense electric field, this phenomenon is normally predicted only after second quantization. In the present
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4-space model, however, we already have an indication of the physics. To reach P = 1 we need β ≈ 0.9837,
corresponding to Z ≈ 135. In the context of LENR, the point of these remarks, and of the graph of P(β), is that the
predicted effects of the 4-space formulation are small in relatively weak electric fields, but can become significant in
strong fields. A further illustration is provided by the 4-space treatment of Klein’s paradox [5].

4. Discussion

The model presented here is an attempt to describe, within a first-quantized framework, phenomena that are normally
in the domain of second quantization. In this sense it is complementary to the efforts of Barut and others [8–12] to
enlarge the scope of first-quantized theories.

The virtual-particle distributions described above are distinct from the more familiar vacuum polarization. Both
can be thought of in terms of quasi-classical charge distributions, but when we consider the implications for tunnelling,
this picture may not be adequate. If we accept it, then the virtual electrons and positrons of the 4-space Dirac theory
(as outlined above) simply cancel each other out. In reality, however, wave functions do not describe continuous
distributions of charge, but rather expected values for the occurrence of discrete charges. The associated potentials
will therefore exhibit random fluctuations, implying that (with a low probability) large deviations from the average
must occur. This suggests that under suitable conditions there could be a significant breakdown of the usual Coulomb
repulsion between hydrogen nuclei. But because such a breakdown is mediated by individual electrons, the likelihood
of its occurrence should decrease very rapidly as nuclear charge increases, effectively restricting the phenomenon to
hydrogen.

Stochastic barriers have already been considered by Habib [13] and others. In the stochastic picture, low-probability
extremes in barrier fluctuations are crucial, so that the fine detail of charge distributions takes on added significance.
Concentration of virtual particles and antiparticles around an axis will make the extremes more likely, and thus provide
a preferred route through a potential barrier. The foregoing description of the ground state shows that such effects can
be much greater in the presence of strong electric fields. Even if the details outlined above do not apply in an actual
LENR experiment, the breaking of symmetry (from spherical to axial in the ground state) can be expected to hold quite
generally. In a lattice structure, especially, it may provide pathways along which low-energy hydrogen nuclei are more
likely to have their mutual repulsion nullified by intervening electrons.
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