Control of excess heat production in Pd-impregnated alumina powder

O. Dmitriyeva^{1,2,*}, R. Cantwell², M. McConnell², and G. Moddel¹

¹ Department of Electrical, Computer, and Energy Engineering, University of Colorado, Boulder, CO 80309-0425, U.S.A.

² Coolescence LLC, 2450 Central Ave, Ste F, Boulder, CO 80301, U.S.A.

* Corresponding author. Tel: +1 7205659690 E-mail address: <u>olga.dmitriyeva@colorado.edu</u>

Abstract

We carried out an experimental study of excess heat production during deuterium loading of Pdimpregnated alumina. Earlier studies [1,2] have shown that a hydrogen-deuterium (H/D) exchange chemical reaction can account for at least some of excess heat observed during gasloading experiments. In this work we show that excess heat contributed by H/D exchange can be eliminated by prebaking the material in vacuum at 390°C, due to the removal of residual water from the material. After the material is given the opportunity to reabsorb water from air the reaction and excess heat production in the presence of deuterium resumes. Our calculations on the energy available from H/D exchange show that all the excess heat observed during our experiment can be accounted for by this chemical reaction.

[1] D. Kidwell, D. Knies, A. Moser, D. Domingues, "Yes, Virginia there is heat, but it is most likely of chemical origin," Proceedings of the 15th International Conference on Condensed Matter Nuclear Science, (2009) 100-109

[2] O. Dmitriyeva, R. Cantwell, M. McConnel, and G. Moddel, "*Mechanisms for heat generation during deuterium and hydrogen loading of palladium nanostructures*," Proceedings of the 16th International Conference on Condensed Matter Nuclear Science, (2011) in press

Control of excess heat production in Pd-impregnated alumina powder

O. Dmitriyeva^{1,2}, R. Cantwell¹, M. McConnell¹, G. Moddel²

¹ Coolescence, LLC, Boulder, CO, USA ² University of Colorado – Boulder, CO, USA

Motivation

- Excess heat in Pd-impregnated materials with D₂¹⁻⁵
- Evidence of exothermic H/D exchange chemical reaction in water^{4,5}

 ¹Y. Arata, Z. Chang, Establishment of the "Solid Fusion" reactor, J. High Temp Soc., 34 (2008) 85-93.
 ²Y. Sasaki, A. Kitamura, Y. Mioshi, T. Nohmi, A. Taniike, A. Takahashi, R.Seto, Y. Fujita, Proceedings of ICCF15, (2009) 94-99.

³ T. Hioki, H. Azuma, T.Nishi, A. Itoh, J. Gao, S. Hibi, T. Motohiro, J. Kasagi, Proceedings of ICCF15, (2009) 88-93. ⁴ D. Kidwell, D. Knies, A. Moser, D. Domingues ICCF15, (2009) 100-109.

⁵ O. Dmitriyeva, R. Cantwell, M. McConnell, and G. Moddel, ACS National Meeting and Exposition, Anaheim, 2011

Motivation

- Excess heat in Pd-impregnated materials with D₂¹⁻⁵
- Evidence of H/D exchange chemical reaction in water^{4,5}

Questions to answer

- Control excess heat by controlling amount of water?
- Enough water to account for excess heat?

Gas-loading system

- Precision of temperature control 10 mK
- 6 g of material
- Pressurized up to 1200 torr
- Temperatures 40 390°C

pressure (torr)

¹⁰th Workshop - Siena

Material fabrication

- Oxide supports:
- alumina: Fisher Scientific P/N: CAS 1344-28-1
 74-177 μ particle size
- high crystalline α-alumina: American Elements
 P/N AL-OX-O2-P.30UM 30-50 μ particle size
- 2% Pd by weight in by wet impregnation of different precursors:
- $Pd(NH_3)_4Cl_2$
- H₂PdCl₄

commercially available 5% Pd in alumina Acros Organic CAS:7440-05-3

20 nm HV=100.0kV Direct Mag: 105000x Philips CM100

O. Dmitriyeva, R. Cantwell, M. McConnell, and G. Moddel, "Mechanisms for heat generation during deuterium and hydrogen loading of palladium nanostructures", ICCF-16, Chennai, India, 2011, in press

D. Kidwell, D. Knies, A. Moser, D. Domingues, "Yes, Virginia there is heat, but it is most likely of chemical origin", Proceedings of the 15th International Conference on Condensed Matter Nuclear Science, (2009) 100-109.

April 2012

Heating and cooling due to H/D exchange

Presence of water

Thermogravimetric analysis

Summary

- 8% of mass lost by 400°C
- Residual gas analysis (RGA): H₂O

Reactivation of heat production

Average weight increase
 3.6 – 5%

Reactivation of heat production

Heat available from water

H_2O 5% by weight $\Rightarrow 0.3 g = 0.017 mol$ Energy of reaction : $-8.3 kJ / mol \Rightarrow -141 J$ total

Experimentally observed : -65J

Summary

- H/D exchange responsible for at least some of excess heat
 - reaction nulled by 390°C bakeout
 - reaction reactivated by moisture reabsorption

 Calculations show enough water to account for excess heat in our experiment

Conclusion

Baking out the material in vacuum for prolonged time prior to any contact with gases is a way to eliminate potential H/D exchange energy contribution