SEARCH FOR OPTIMUM CONDITIONS TO PRODUCE EXCESS HEAT FROM THE ELECTROLYSIS OF HEAVY WATER WITH A PALLADIUM CATHODE

J. Dash, A. Ambadkar, Q. Wang
Portland State University
Portland, Oregon.
control cell: \(\text{H}_2\text{O} + \text{H}_2\text{SO}_4 = 20:1 \) by volume

experimental cell: \(\text{D}_2\text{O} + \text{H}_2\text{SO}_4 = 20:3 \) by volume

Control cell: Pt foil electrodes

Pyrex Berzelius beaker (200 ml)

Experimental cell: Pd cathode, Pt anode.
Figure 13. AFM images of a) Pd foil surface after cold rolling (the vertical lines resulted from contact with the steel rolls); b) Pd cathode surface after electrolysis for 12 minutes; c) and d) are enlargements of surface pit in (b) to show the rounded and faceted features.
Figure 15. a) A bowl-shaped cavity in Pd cathode, illustrated a) in the height-mode b) in the force-mode, showing striations that converge into its center, and c) contour of the crater. The crater drops > 280 nm vertically from its rim.
Figure 22. An AFM force-mode image a) of the palladium cathode side facing away from the anode, electrolyzed for a total of 105 seconds. The asperity seen here appears to be from melting and recrystallization. The angles of the facets suggest that these are traces of \{111\} planes. The section analysis b) indicates that this feature rises about 1 \(\mu\)m above the surrounding surface.
Figure 29. SIMS is a procedure that bombards a small area of the Pd surface with a primary beam (Cs133). Surface atomic layers are sputtered off, and the mass of the ions from the resulting sputtered particles are analyzed using a mass spectrometer to provide elemental and isotopic identification.
RELATIVE ABUNDANCES AND WEIGHTS OF NATURALLY OCCURRING ISOTOPES

<table>
<thead>
<tr>
<th>Elem.</th>
<th>AMU</th>
<th>Isotopic Comp. (at. %)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pd102</td>
<td>101.905634</td>
<td>1.020</td>
</tr>
<tr>
<td>Pd104</td>
<td>103.904029</td>
<td>11.14</td>
</tr>
<tr>
<td>Pd105</td>
<td>104.905079</td>
<td>22.33</td>
</tr>
<tr>
<td>Pd106</td>
<td>105.903478</td>
<td>27.33</td>
</tr>
<tr>
<td>Pd107</td>
<td>107.903895</td>
<td>26.46</td>
</tr>
<tr>
<td>Pd110</td>
<td>109.905167</td>
<td>11.72</td>
</tr>
<tr>
<td>Ag107</td>
<td>106.905092</td>
<td>51.839</td>
</tr>
<tr>
<td>Ag109</td>
<td>108.904757</td>
<td>48.161</td>
</tr>
<tr>
<td>Cd106</td>
<td>105.906461</td>
<td>1.25</td>
</tr>
<tr>
<td>Cd108</td>
<td>107.904176</td>
<td>0.89</td>
</tr>
<tr>
<td>Cd110</td>
<td>109.903005</td>
<td>12.49</td>
</tr>
</tbody>
</table>
Figure 1. SIMS profile of the six palladium isotopes for a region of the palladium sample not electrolyzed (top), and a region of the six minute heavy water electrolyzed sample (bottom). The latter shows isotopic inversions of Pd108 with Pd106, which merge after ~65 minutes sputtering. Also Pd110 and Pd104 are inverted.
Figure 5.20. Schematic representation of an energy-dispersive spectrometer and its associated electronics.
Pd cathodes 0.35mm thick, after electrolysis for about 400 hours

H - electrolyzed in H₂O – H₂SO₄
D – electrolyzed in D₂O – H₂SO₄

0.1 to 0.2 watts excess power produced by D₂O cell compared with H₂O cell during first 300 hours of operation

0.1 to 0.2 watts excess power produced by H₂O cell compared with D₂O cell during final 100 hours of operation
Fig. 2. Enlargement of lower right corner of H$_2$O cathode in Fig. 1.

The electrolyte where it occurs due to slow dissolution of the Pt anode. Au, however, is not expected to arise from a pure Pt anode. Nor is it expected to occur inhomogeneously as an impurity in Pd because Au and Pd are completely miscible in the solid state.3

Fig. 3. EDS spectrum from region A of the H$_2$O cathode shown in Fig. 2.

Fig. 4. EDS spectrum from region B of the H$_2$O cathode shown in Fig. 2.
Assume that the following fusion reaction occurs:

\[\text{D}^+ + \text{D} \rightarrow ^3\text{He} \ (0.82 \text{ MeV}) + \text{n} \ (2.45 \text{ MeV}) \]

Subsequently, the neutron produced in this reaction is absorbed by a Pt atom on the surface of the Pd electrode. The energy of the neutron is converted to heat, and the Pt atom decays to Au by the following reaction:

\[^{196}\text{Pt} + \text{n} = ^{197}\text{Pt} = ^{197}\text{Au} \]

^{197}Pt is an unstable isotope, with a half life of 80 min. It yields an orbital electron, thus becoming ^{197}Au (stable).
Characteristic Peaks for Pd, Ag, and Cd

La - most intense

Lb - about one-half La intensity
A: Spectrum from area of photograph in Figure 3
B: Spot 1, Figure 4
C: Spot 2, Figure 4
D: Spot 3, Figure 4
E: Spot 4, Figure 4
Figure: Circuit diagram. A Single-pole-double-switch (SPDT) switch was used to switch the voltmeter reading between the two experimental cells. ‘ ’ Represents a K-type thermocouple used for temperature measurement. All thermocouples were attached to a STP-36CJC-102-02A board manufactured by Kiethley. The board was connected to a computer which was used to read and paste temperature values in a MS Excel worksheet.
Equations for excess heat

At steady state:

\[\text{Power IN} = \text{Power OUT} - \text{Anomalous power} \]

\[IV_1 = k(T_1 - T_A) + \frac{dH_1}{dt} \]

\[IV_2 = k(T_2 - T_A) + \frac{dH_2}{dt} - \frac{dH_{xs}}{dt} \]

I = constant current

\(V_1 \) = control cell voltage

\(V_2 \) = experimental cell voltage

k = a constant

\(T_1 \) = control cell temperature

\(T_2 \) = experimental cell temperature

\(T_A \) = ambient temperature

\(\frac{dH_1}{dt} \) = power lost from control cell due to evaporation

\(\frac{dH_2}{dt} \) = power lost from experimental cell due to evaporation

\(\frac{dH_{xs}}{dt} \) = excess thermal power
Excess power data for 2 cells with Pd cathodes and heavy water electrolyte in comparison with a control cell which had a Pt cathode and light water electrolyte. Current = 3A, Current density = 0.48 A/cm-sq. Precision of measurement is estimated at +/- 0.1W
Fig. 5. Changes in morphology and EDS spectra of the features in the square shown in Fig. 4a. These changes occurred during storage at room temperature with no further electrolysis.
Palladium Lβ/Lα = 0.4 ➜ Elemental Silver = 0%
Palladium Lβ/Lα = 0.6 ➔ Elemental Silver = 7%
Palladium Lβ/Lα = 0.74 ➞ Elemental Silver = 10%
Excess thermal power output versus experimental cell temperature. Current density was about 0.5A/cm² for all three experiments. Pd cathode thickness was 0.05mm.
Pd-0.05mm-8mm-36mm Sample

1. Image

Fig. 1.1 Image of sample Pd-0.05mm-8mm-36mm (small magnification)

Fig. 1.2 Image of sample Pd-0.05mm-8mm-36mm (big magnification)
2. Spectrums

EDS of Pd-0.05mm-8mm-36mm convex, area s11, which has largest silver concentration, 4.02% (Pd Lb/La=0.63)

EDS of Pd-0.05mm-8mm-36mm convex, area s14, which has silver concentration, 1.9% (Pd Lb/La=0.73)

EDS of Pd-0.05mm-8mm-36mm concave, area s10, which has largest silver concentration, 9.56% (Pd Lb/La=0.78)

Figure: EDS of sample Pd-0.05mm-8mm-36mm
3. Concentrations

Figure: All concentrations of sample Pd-0.05mm-8mm-36mm

Figure: Ag concentrations of sample Pd-0.05mm-8mm-36mm

Figure: Pd concentrations of sample Pd-0.05mm-8mm-36mm