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Abstract

Schwinger pointed out that under some circumstances the Coulomb barrier between paired charged particles is replaced by a
correlation factor in a two-body wave function. This paper shows how having two deuterons bound within a common volume having
a multiplicity of potential wells can lead to an energy-minimized Schwinger form of wave equation with wave function overlap.
Relevance to a situation in which a small number of deuterium atoms is forced into a fully loaded palladium deuteride (PdD) host is
discussed.
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1. Introduction

In conventional nuclear fusion [1], the presence of a Coulomb barrier between interacting nucleons has always prevented
nuclear reactions, except at high collisional energy or in the presence of negative muons. Reaction rates between
deuterons are calculated by use of the Gamow factor. When the Gamow factor is applied to deuterons at condensed
matter temperatures, it forces reaction rates to be much too low to be observable. Nonetheless, Julian Schwinger
believed that the Gamow factor models were wrongly applied to cold fusion experiments. He stated, “In the very low
energy cold fusion, one deals essentially with a single state, described by a single-wave function, all parts of which are
coherent. A separation into two independent, incoherent factors is not possible, and all considerations based on such a
factorization are not relevant [2]”.

Energy minimization quantum mechanics can be used to model a localized charged particle pair and its response to
its internal Coulomb repulsion potential. This response is normally determined by the value of λm/am, where λm is the
DeBroglie wavelength and am is the Bohr radius of a particle of mass m. When λm/am << 1 the energy-minimizing
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configuration is that of adjacent, mutually incoherent single-particle wave functions prevented from significant mutual
overlap by a Gamow factor. At λm/am > 1, the particles are described by a coherent 2-body wave function in which
the two particles occupy a common volume of space. The Coulomb repulsion is expressed by a correlation factor that
reduces the magnitude of the 2-body wave function at the overlap “point”. An example of such a correlated 2-body
wave function is the wave function of the spin-paired electrons of the helium atom.

As described by Seitz, the Hylleraas second approximation wave function is

�s = e−αs(1 + a1u + b1|r12|2),
where s = |r1| + |r2|, t = |r1| − |r2|, and u = |r12| = |r1 − r2|, and α, a1 and b1 are the constants determined by
energy minimization [3,4]. r1 and r2 are the configuration coordinate position vectors that locate the electrons relative
to the helium atom center of mass. The e−αs dependence is spherically symmetric, like the charge distribution around
the H atom. The second factor, involving parameters t and u, modulates the 2-electron wave function and produces a
downward cusp at zero separation point where t and r12 → 0 can be rewritten as

�s(rcm,r12) = �(rcm) g(rcm,r12),

where �(rcm) = e−2α|rcm | and g(rcm,r12) = ∼ 1 + a1|r12| + b1|r12|2.
The g(rcm,r12) is a correlation function which describes the anti-correlation between electrons. The amplitude of

�s(rcm,r12) decreases where r12 → 0.
Ion band state theory considers systems in which delocalized D+ ions are embedded in a metal lattice. The dimension

scale of the lattice periodicity is set by the electron Bohr radius ae. The deuteron λm is about 1/4000 λe, where λe is the
electron DeBroglie wave length. Since λm /ae is ∼ 1/4000 << 1, the expectation is that the Gamow factor type wave
function would apply. The Schwinger statement contradicts this expectation. He implies that a system supporting cold
fusion has been specially prepared so as to make the correlation form of interaction applicable at λm/am = ∼ 1/4000.

This paper describes how the imposition of lattice periodic order on a D+ 2-body wave function describing deuterons
in a periodic metal lattice can prepare a system so as to satisfy the Schwinger prescription.

2. Density distributions

Function |�s |2 is the normalized-to-unity density distribution of the 2-electron pair of the ground state helium atom.
It is the stationary state distribution referred to in chemistry as a closed-shell orbital. 2e|�s |2 is the charge distribution
that neutralizes the nucleus of the helium atom. A more compact electron charge distribution 2e|�e,Li|2 of the same
type screens the nucleus of the Li atom. The screened nucleus charge of the lithium atom forms the potential well
within which the valence electron is embedded. The Li nucleus screened by 2e|�e,Li|2 is called a mean field distribution
in the language of condensed matter physics. The valence electron is prevented from assuming the electron density
distribution |�e,Li|2 by the Pauli exclusion principle.

Figure 1a shows the charge density distribution for the pair of mutually incoherent deuterons of the D2 molecule.
Figure 1b is a similar drawing showing the charge distribution for a pair of coherently connected Bloch function
deuterons as envisioned by the Ion Band State Theory [5]. The spatial distribution of a Bloch particle is defined by
|�(r)|2, where |�(r) + Rj | = |�(r)|, where Rj is any of Ncell Bravais lattice vectors identifying equivalent locations
in the Ncell unit cells making up the occupied coherent volume. The coherent deuterons are mixed by imposition of
coordinate exchange symmetry. In Fig. 1b, the pictorial representation of the exchange-symmetrized single-particle
Bloch deuterons that make up the Bloch D+ pair are assumed to have identical single-particle wave functions. The
charge distribution in Fig. 1b then also describes the charge distribution of each of the single-particle Bloch deuterons.

Figure 1b drawing depicts the density distribution of surface deuterons in contact with a metal surface. The
deuterons occupy a volume 1 layer thick and conform to the 2-dimensional array symmetry of the underlying metal
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surface. Alternatively, the drawing serves to illustrate the density distribution of Bloch ions occupying a set of interstitial
potential wells within a bulk metal crystallite. In either case the volume of the coherently occupied array is finite and
measured by counting the number of occupied unit cells Ncell. The stationary state single-particle charge density in
each potential well is e|�(r)|2/Ncell, assuming one potential well per unit cell.

In this paper the Ion Band State Theory models low-density deuterium matter as delocalized ions embedded in a
metal crystallite. It is the “ion” equivalent of the electron band state theory of a metal. The term “ion” is used loosely in
that it is required that the ion and the metal’s neutralizing electronic charge maintain charge neutrality over the volume
of each unit cell of a metal crystallite. Neutralized ions of this type are said to be “dressed”. Dressed ions are ions that
are fully screened within the confines of a single unit cell volume by the mobile electron medium of the metal. Consider
a bulk metal containing numbers of 3-dimensional crystallite volumes separated from each other by potential barriers
or by regions of lower crystalline order. Examples of such isolated ordered regions are shown in electron microscope
pictures of “atom clusters” by Fujita [7]. We model sets of coherent ions confined to a bounded small local region of
relatively high crystalline order. The size of a host crystallites containing a set of ion band state occupations is measured
by counting the number of unit cells Ncell making up the ion coherence volume.

- Array ressembles a dimpled metal sheet

D2 molecule D+ Bloch

1a 1b

Figure 1. Toy Models: Part a shows the charge distribution of two D+ in separated potential wells within a molecule’s electron cloud. The
deuterons are mutually incoherent. The Leggett and Baym modeling [6] has incoherence of this type. Part b shows a single Bloch D+ in an array
of potential wells provided by a metal crystal. Neutralization is provided by the metal’s mobile electrons. Localized charge maxima are coherently
coupled so that the sum over Ncell unit cells is a single delocalized deuteron. Part b can also depict the center-of-mass charge distribution of two
Bloch D+ ions coherently coupled by coordinate exchange, and also of a quasiparticle pairing of Bloch deuterons in a many-body D+ Bloch system.
The array of charge maxima is used to illustrate both a D+ charge distribution having 3-dimensional periodic symmetry inside a metal, and a D+
charge distribution inside an interface layer resting on metal surface having 2-dimensional periodic symmetry.

3. 2-Body Bloch function physics

The appropriateness of Fig. 2b Bloch function configuration is determined by energy minimization. Consider the effect
of periodic symmetry on the behavior of a coherent many-body D+ ion system in which a low number-density set of
deuterons is subjected to an imposed periodic potential. Consider ND deuterons inside a small crystal consisting of
Ncell identical unit cells where ND/Ncell << 1. An example would be 100 deuterons in a crystal made up 106 unit
cells. Such a system is composed of bosons of mass mD and charge e, where mD is the deuteron mass and e is the
deuteron charge. The ND deuterons are indistinguishable particles described by single-particle Bloch wave functions
�(r, k) such that |�(r + Rn, k)| = |�(r, k)|, where k is a wave vector quantum index and where the Rn is a set of
Ncell distinct Bravais lattice vectors. Each of the set of �(r, k) has a distribution within physical space {r} with an
identical local density maximum in each of the Ncell identical unit cells. The energies of the �(r, k) can be different,
but because the D+ are bosons, they can all be the same. Members of the Bloch D+ set are allowed to have somewhat
different spatial distributions.
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The above system is described by a many-body wave function with coordinate exchange. Exchange replaces the ND
single-particle wave functions with ND single-quasiparticle wave functions described by ND Bloch functions. Because
of exchange symmetry the quasiparticle states are coordinate-entangled. This means that the phase difference between
a given pair of quasiparticles remains constant and independent of r. In our treatment of the many-body description we
consider only the set of 2-quasiparticle entanglements, one for each of the Nb(Nb − 1)/2 distinct quasiparticle pairs. A
full many-body treatment of the system would include the entanglements between sets of three quasiparticles, sets of
four quasiparticles, etc. in addition to the set of paired quasiparticles considered here.

The standard protocol for constructing 2-particle wave functions is to start with a product of single-particle wave
functions. This form of wave function gives the correct behavior for particle pairs with no self-interaction [8]. The
single-particle wave functions are solutions of a Schrodinger equation. The solutions obtained customarily fit Born
Von Karman periodic boundary conditions that do not properly match the box-like boundary that encloses a crystallite
volume. In practice this procedure gives useful wave functions when applied to not-too-small lattice volumes. Finite
cluster and thin-film calculations involving 3d and 4d metal atoms have shown that the resulting wave functions provide
a good description of an embedded system provided that the host bulk-like crystal periodic environment has dimensions
more that a few unit cells in depth.

For a periodic potential of the form U(r + Rn) = U(r), the eigenstate wave functions are Bloch functions �(r)
having “Bloch” symmetry as described by |�(r + Rn)| = |�(r)|. The simplest 2-body wave function �(r1, r2) is

�(r1, r2) = �1(r1)�2(r2), (1)

where �1(r1) and �2(r2) are single-particle (or single-quasiparticle) Bloch functions and r1 and r2 are the physical
positions of particles 1 and 2 in the metal lattice. The r1 and r2 are configuration coordinate vectors. Atomic physics has
shown that this simple form of 2-body wave function is suitable only for modeling distinguishable, mutually incoherent
particles 1 and 2. Neglecting the effects of spin, if the particles are indistinguishable and in the same state, the allowed
2-body wave function must have coordinate exchange symmetry, which is symmetric for bosons and suitably paired
fermions, and is anti-symmetric for single fermions. Bosons and spin-paired fermions are symmetrized by applying
the symmetric coordinate exchange symmetry constraint.

In the Ion Band State Theory, �1 and �2 are assumed to be independent Bloch functions and r1 and r2 refer to
positions r in the lattice. Functions �1(r) and �2(r) have the symmetries:

|�1(r1 + R1n)| = |�1(r2)| and |�2(r2 + R2m)| = |�2(r2)|,
where R1n and R2m are independent Bravais lattice vectors. The 2-body wave function �(r1, r2) has the dual symmetry

|�[(r1 + R1n), r2]| = |�(r1, r2)| and |�[r1, (r2 + R2m)]| = |�(r1, r2)|
for all positions r in the lattice, including the center-of-mass position r = rcm = (r1 + r2)/2.

4. The double Bloch function self-interaction picture

In order to quantify the point-particle aspect of the Coulombic self-interaction in a 2-body system, it is necessary to
express the wave function in terms of center-of mass, separation coordinates, where rcm = (r1+r2)/2 and r12 = r1−r2.
One then seeks 2-body wave function solutions of the appropriate wave equation in terms of separable functions �(rcm)

and g(r12). Since �(r1, r2) is Bloch symmetric with respect to both r1 and r2, it is also Bloch symmetric in terms
of rcm. The interesting question is the behavior of �(r1, r2) when R1n varies independently of R2m . The assumption
of independent lattice vectors means that R1n − R2m = R12j

is also a Bravais lattice vector. This assumption makes
�(r1, r2) Bloch symmetric with respect to both r12 and rcm.
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The Schrodinger-like wave equation describing two interacting band state deuterons in a periodic lattice of Ncell
unit cells is a six degree-of-freedom equation in center-of-mass,separation space. We examine solutions to Eq. (2) of
the form

�(rcm, r12) = �(rcm)g(r12), (2)

where |�(rcm+Rcm)| = |�(rcm)| with Rcm = (R1n+R2m)/2 and |g(r12+R12)| = |g(r12)| with R12 = R1n−R2m �= 0
except in one unit cell.

Here Rcm is a Bravais lattice vector in physical space {rcm} and R12 is a Bravais lattice vector in separation parameter
space {r12}. This resulting symmetry is called “double Bloch symmetry”. We determine the conditions for which this
form of wave function minimizes system energy.

The 2-body wave equation can be separated into two wave equations:
∫ D+ Coherent Vol

�∗(rcm)

{
− h̄2

4mD
∇cm2 + (2e)Ulattice(rcm)

}
�(rcm) d3rcm = Eext�(rcm) (3)

and

∫ r12 lattice

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

− h̄2

2mD
∇2

12 +
Ncell∑
j=1

coherent
volume

e2/(Ncell|(r12 + R12j
)|)

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

g(r12) d3r12 = Eint g(r12). (4)

The first term in Eq. (3) describes the center-of-mass kinetic energy density of a double deuteron, i.e., a mass-4,
charge-2 exchange-symmetrized Bloch quasiparticle, coherently delocalized over Ncell unit cells of center-of-mass
space. Center-of-mass space {rcm} is also metal lattice space {r}. The second term describes the potential energy of a
mass-4, charge-2 exchange-symmetrized Bloch quasiparticle over Ncell unit cells of metal lattice space. This potential
energy is periodic in physical space. The first term in Eq. (4) describes the kinetic energy density of internal motion of
the double deuteron particle over the Ncell unit cells of separation space, which is an internal coordinate space associated
with the difference in positions of two interacting deuterium nuclei. The second term in Eq. (4) is actually a sum over
terms, as shown in Eq. (4). This sum of terms is a function that is well-defined near its singular points, where it describes
the e2/|r12| singular potential of the partitioned double-deuteron’s dressed Coulombic self-interaction. Position vector
rcm ranges over Ncell unit cells of {rcm}, and separation vector r12 ranges over Ncell unit cells of {r12}. R12j

is a set
of Ncell Bravais lattice vectors locating equivalent points in {r12}.

Figure 2 shows a sketch of a possible �(rcm, r12). Wave function factor �(rcm) shows a density maximum
within each of Ncell equivalent potential wells provided by lattice potential Ulattice. Wave function factor g(r12) causes
|�(rcm, r12)| to have a local minimum at each r12 + R12j

= 0 point in separation space (i.e., at r12 = 0 modulo
R12j

). The functional form of g(r12) is that of a near constant amplitude function reduced periodically by a set of Ncell
cusps. At each cusp point in wave equation (4), a singularity in the partitioned Coulomb self-interaction is cancelled
by a singularity in the internal kinetic energy established by a discontinuity in the momentum (ih̄/m)∇12 g(r12). If the
mean value of g(r12) is a and the cusp depth is b, then (a − b)/a is a measure of the degree of D+D+ wave function
overlap.

5. Energy-minimization

Equation (2) describes band state ions in a metal lattice where a fermi sea of electrons is present that provides ion
screening sufficient to guarantee charge neutrality in each unit cell. The electron screening requirement means that the
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e2/|r12| form of the Coulombic interaction shown in Eq. (4) is valid only well inside a screening volume Vsc, which is
smaller than the volume of the unit cell.

We examine an energy-minimized form of �(rcm, r12) at large Ncell with electron screening included. Energy
minimization of Eqs. (3) and (4) proceeds independently. The energy minimized form of Eq. (3) is that of a charge-2,
mass-4 double-deuteron in the lattice field Ulattice(r). To obtain an energy minimized solution to Eq. (4), we start
with a set of trial correlation functions g(r12). Here Hylleraas provides guidance in his approximate solutions for
the 2-electron wave function of the helium ground state atom. In analogy to the simplest Hylleraas approximation,
we choose a periodic form of Hylleraas-like trial functions g(r12) which meets the lattice requirement for periodic
symmetry, namely

g(r12) = A[1 + b sin(π |r12|/4rsc)]/(1 + b), |r12| < 2rsc, (5)

g(r12) = g(2rsc)A, |r12| > 2rsc,

where A is a normalizing constant, b is the depth of the assumed cusp, and rsc is a screening radius beyond which the
Coulomb repulsion force between the coupled dressed deuterons is not felt. In the energy minimization process using
Eq. (4), Ncell is kept fixed and various values of b are chosen so as to minimize the sum of internal potential energy
Epot and internal kinetic energy Eke. The normalizing constant A for g(r12) is calculated to be

A = {[1/(1 − 2b)]1/2}/(NcellVcell) + O(b2, r3
sc/Vcell)

with b and r3
sc/Vcell treated as small quantities.

ψ (rcm)

g (r12)

Figure 2. Toy Model. Factor e|�(rcm)|2 measures the charge distribution of 2-D+
Bloch in center-of-mass space {rcm}, which is also lattice space.

The density distribution is the same array as differently depicted in Fig. 1 b. g(r12) is a Bloch wave function in separation space {r12}. It is
normalized to a mean value = 1, so as to appear as a correlation function in the 2-body wave function �(rcm, r12) describing a 2-D+ Bloch pair.
The deuterons are anti-correlated in the sense that the amplitude of �(rcm, r12) decreases as r12 → 0 modulo R12j

, where R12j
is a lattice vector

in {r12}.

6. Cusp depth vs. Ncell

The above process determines the value of Ncell that minimizes system energy for suitable pre-selected values of b and
rsc. We are concerned with the behavior of Eke and Epot at large Ncell, for which the value of b that minimizes total
energy is much less than 1. How are the g(r12) dependencies of Eke and Epot affected by Ncell? In the limit that b → 0,
one finds that A → 1/(NcellVcell) and the integrand of the potential energy term → (1−2b){1+2b sin(π |r12|/(4rsc))}.
Then, in the integration of r12 over the Ncell unit cells in {r12}, we find that

Eke(g) = 2π(π2/6 − 1)e2meaerscb
2/(mDNcellVcell), (6a)

where ae is the electron Bohr radius. Similarly, we find, after integrating over r12, that

Epot(g) = −(128/π)(π2/8 − 1)rsc e2b/(N2
cellVcell). (6b)
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Evaluating Eq. (8) for an assumed test case, we take Vcell = 16 Å3 and rsc = 0.156 Å = 0.1× Wigner Seitz radius.
Then

Eke(g) = 0.82 × 10−4b2/Ncell eV,

Epot(g) = −0.224b/N2
cell eV.

The energy minimizing condition −δEpot(g)/δb = δEke(g)/δb, occurs at

Ncell = (mD/me)(rsc/ae)32/π2)[(π2/8 − 1)/(π2/6 − 1)](1/b) (7)

= 0.59(mD/me)(rsc/a0)(1/b).

The energy minimizing condition is Ncell = 6.83×102/b. More than ∼90% dd overlap exists at Ncell ≥ 6.8×103,
since b < 0.1.

Equation (7) shows how cusp amplitude b increases with decreasing Ncell. Figure 3 depicts g(r12) at three values
of Ncell. When b becomes large enough that g(r12) → 0 at r12 = 0 modulo R12j

, the double Bloch wave function
model becomes unphysical. Then �(rcm, r12) reverts to the molecular form shown in Fig. 1a, and the two D+ become
mutually incoherent. The smallest Ncell supporting the Schwinger form of wave equation is designated Ncell,critical.

Ncell = Ncell, critical

Ncell = 3 Ncell, critical

Ncell = 10 Ncell, critical

Figure 3. Toy Models. Correlation functions g(r12) are shown for three values of Ncell. The cusp depth becomes deeper with decreasing Ncell.
At Ncell,critical the values of g(r12) → 0 at each r12 = 0 modulo R12j

.

7. QM protocol, Wannier states, boundary conditions, and fluctuations

Wave equation,wave function quantum mechanics is a protocol that permits calculation of stationary states and associated
energies for a defined environment. To match reality, various symmetry constraints must be applied so as to restrict
the set of allowed wave functions. Many-body wave functions must comply with the Pauli exclusion principle and
coordinate exchange symmetry. If the self-interaction between members of a coherent pair is to be modeled, the protocol
must make use of a transformation from configuration coordinates to center-of-mass,separation coordinates. There has
been an ambiguity in the rules governing this transformation. This paper tests the case where that the transformation
expresses double Bloch symmetry.

The assumption that Double Bloch symmetry applies is supported by arguments based on using a Wannier states
representation of a stationary state Bloch function [9]. A single-particle Bloch state is expressed as a sum over transiently
occupied Wannier states, in each of which a whole particle occupies a single potential well for an unspecified time.
A single Wannier state is not a stationary state and breaks periodic symmetry. The Bloch stationary state equals the
symmetric sum over all the single-particle Bloch states, in accord with Anderson’s symmetry principle [10]. When
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two deuterons occupy a set of Wannier states, each deuteron is randomly placed in one of the Ncell unit cells. There is
a 1/Ncell chance that both deuterons will end up in the same unit cell. Since there is no contribution to the Coulomb
repulsion potential when the dressed deuterons are in different cells, the effective strength of the Coulomb repulsion
is e2/(|r12|Ncell), as deduced by summing over the Ncell unit cells. This repulsion potential is the same as calculated
using a double Bloch symmetry 2-body wave function.

The time-independent correlation functions g(r12) shown in Fig. 2 have discontinuities in momentum at Ncell
cusp points in {r12}. At each of these points, the kinetic energy → ∞ at a rate that exactly cancels the singularity in
potential energy e2/(|r12|Ncell). The magnitude and number of momentum discontinuities at the Ncell discontinuities is a
boundary condition imposed on the 2-body wave function. The boundary condition in {r12} complements the boundary
conditions in {rcm}, which define the deuteron containment volume and the multiplicity and shape of potential wells
in {rcm}.

In the Bloch picture, the fraction of charge located within any single unit cell is not a precisely measurable quantity.
It is subject to quantum fluctuations about an expectation value. This behavior is the same as that described by Greiner
et al. [11] for a low density set of Bose atoms in an optical lattice. Coordinate-entangled dressed deuterons in a metal
lattice may share some properties with Bose atom condensates in an optical lattice.

8. Relevance to cold fusion

It has been widely assumed that the conventional picture of a “Coulomb Barrier”, as formulated in scattering theory,
should be relevant to Pons and Fleischmann “Cold Fusion”. However, we now know that the Pons and Fleischmann
claims do not mimic conventional fusion. Cold fusion reactions are not a result of the kinetic collision between two
deuterons, and do not involve asymptotic plane wave scattering theory, such as leads to Gamow factors [8]. Instead it
involves perturbative interactions between nuclear states formed from protons, neutrons, and resonant groupings thereof,
like alpha particles and di-neutrons, as modeled by Wheeler [12]. The interactions between these nuclear components
involve continuous potentials that are defined over the full range of distance scales, from subnuclear, through nuclear,
through atomic, through the macroscopic dimension scales of metal crystals. Although the nuclear force potentials are
confined to nuclear dimension, the electromagnetic interaction potential extends over the full range of length scales
where interaction can occur. Furthermore, wave function coherence, expressed as an ordering of wave function phases
over macroscopic distances, must be applied to the wave functions of the interacting nuclei.

Cold fusion viewed as a variant of D+ + D+ → 4He++ +γ takes place without radiation. It occurs rarely because
the initial state D’s are required to “be prepared” and “entangled” in a particular way. When additional D atoms are
forced into a fully loaded PdD lattice, appreciable D+ − D+ overlap can occur at many different locations, simulta-
neously, without appreciable D+ charge accumulation at any particular location. [13] These delocalized deuterons are
“Bloch state” deuterons. At large r their asymptotic form is a Bloch function and not a plane wave. Although this
paper does not explicitly deal with problems associated with energy release and dissipation, the Bloch wave function
form provides a useful picture for understanding how, in a periodic solid, the conventional “Coulomb Barrier” can be
altered through long-range coherence in a way that potentially leads to nuclear reaction [13,14]. The model accom-
plishes this by replacing the problem of “Overcoming the Coulomb Barrier” with an alternative energy minimization
problem.
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