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At present, mechanical characterisation of engineered surfaces is gaining more and more 

interest for the growing industrial application of surface modification and coating techniques, 

which are usually applied to improve either surface mechanical or functional performances 

(i.e hardness, load bearing capacity, wear resistance, surface free energy and chemical 

reactivity, electrical resistivity, thermal conductivity,…). 

Furthermore, it has to be considered that the development of nanostructured materials and the 

growing use and application of nano-systems and nano-structures make the use of advanced 

procedures for nano-scale mechanical characterisation strictly necessary; in other cases, 

mechanical behaviour can be strongly influenced by microstructural and size effects (grain 

size, defects, interfaces, porosity,…), so multi-scale characterisation procedures are strongly 

needed for a determination of the correct correlation function among process parameters, 

surface properties and in-service performances. 

It is therefore clear that a comprehensive, statistically reliable, economically sustainable 

procedure for the characterisation of engineered surfaces has not yet been developed in 

literature, especially when a strong microstructure and size dependent behaviour is observed. 

In the present work, a new developed characterisation procedure for the mechanical 

characterisation of enginireed surfaces is presented, based on the combined use of high 

resolution microscopy (FIB-SEM, TEM, AFM) and surface mechanical characterisation 

techniques (nanoindentation, scratch testing). 

In particular, two case studies are reported: 

• Analysis of residual stresses of engineered surfaces by coupling focused ion beam 

controlled material removal and nanoindentation testing 

• Nano-mechanical characterisation of sputtered niobium thin films for application in 

accelerating cavities; 

All reported results arise from the application of integrated methodologies, which start from 

indentation or scratch experiments and finally come to the evaluation of mechanical 

properties of investigated materials, by the support of modelling (both analytical and 

numerical) and high resolution morphological and microstructural characterisation activities, 

such as Scanning and transmission electron microscopy (SEM, TEM), Focused Ion Beam 

microscopy (FIB) and Atomic Force Microscopy (AFM) techniques. 

It is shown that only by the combination and synergic use of surface mechanical testing and 

SEM-TEM-FIB- AFM microscopy a reliable correlation between surface properties and in 

service performances can be obtained. 
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Founded in 1992
One of the 4 State University in One of the 4 State University in 
Rome (9 in total)
175 000 m2175.000 m
More than 40.000 students 
(4.100 enrolled in Engineering)( g g)
More than 700 Researchers and 
Professors
Faculty of Engineering:
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Functional and structural behavior are strongly influenced 
by micro-structural effects (grain size, defects, 

precipitates  interfaces  porosity )precipitates, interfaces, porosity,…)

Ok  not really a news; howeverOk, not really a news; however…
Engineered surfaces are spreading quickly also in non 
high-tech products (also in mass products);
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Conventional characterisation techniques are 
not completely exhaustive for describing all not completely exhaustive for describing all 
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traditional   
techniques

Examples

Visualization and 
hi i  t th  l Imachining at the nanoscale

•Resolution
•Other probes than e-

N t l  I i  b t l  

I
Nb coatings for 

superconducting 
cavities
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FEI 
Helios 600 
Nanolab

Detectors:
SE  SI  TLD SE, SI, TLD 

(SE+BSE), STEM.
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SEM C l  0 76  @ 15 kV SEM Column: 0,76 nm @ 15 kV 
FIB Column: 5 nm @ 30 kV 
(spatial resolution)
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FIB MODES: ION IMAGING

• Voltage contrast: insulators 
appear dark while groundedappear dark while grounded
conductors are bright.
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FIB MODES: DEPOSITION (PT)
5
-9

/1
0
/2

00
0
9

E
. B

em
p
o
rad
reso d

: In
teg

rate
o
lu

tio
n
 su

rf ed
 ap

p
ro

ach
face ch

arac

16

h
 fo

r h
ig

h
 

cterisatio
n



CROSS SECTIONS
5
-9

/1
0
/2

00
0
9

E
. B

em
p
o
rad
reso d

: In
teg

rate
o
lu

tio
n
 su

rf ed
 ap

p
ro

ach
face ch

arac

17

h
 fo

r h
ig

h
 

cterisatio
n



CHARACTERIZATION WITH DUAL BEAM MICROSCOPY
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CHARACTERIZATION WITH DUAL BEAM MICROSCOPY
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Multiscale and multitechnique approach to mechanical 
characterization of tribological coatings
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CHARACTERIZATION WITH DUAL BEAM MICROSCOPY
5
-9

/1
0
/2

00
0
9

Multiscale and multitechnique approach to mechanical 
characterization of tribological coatings

Scratch test 
Lc3 failure
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TEM SAMPLE PREPARATION WITH FIB

The sample surface is investigated before cutting to 
determine the area of interestdetermine the area of interest.
Then the sample is milled and polished with predefined 
milling patternsmilling patterns
Time for a lamella preparation: less then 2
hours with expert operatorhours with expert operator
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SITE SPECIFIC TEM X-VIEW
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SITE SPECIFIC TEM X-VIEW
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SITE SPECIFIC TEM X-VIEW

STEM imageSTEM image 
inside the FIB
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Indentation Size Effect (ISE) 
curves: analysis of hardening 

behaviour

Fracture toughness of bulk 
Advanced 

Microscopy 
Microhardness

Nanoindentation

Fracture toughness of bulk 
ceramics

Elastic modulus and 
mechanical anisotropy
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Microscopy 
Techniques
HR-SEM

FIB

Intrinsic hardness of thin films
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Correlation to microstructure
Correlation to in-service behavior and/or 

functional properties 



NANOINDENTATION ON NB THIN FILMS
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500 nm E
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crystallization 
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CASE STUDY I
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RESONANT CAVITIES FOR PARTICLE ACCELERATORS
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Bulk Niobium

Copper cavity

Very low Very low 
Surface 
electrical E

resistance 
(∼nΩ a 1,8 K)

Lower costs
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MATERIALS: COMPARISON OF TWO DEPOSITION PROCEDURES
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9 765 CERN type sputtering

12 766 CERN type sputtering12 766 CERN type sputtering

YY 767 BIAS type sputtering (100V)

R 768 BIAS type sputtering (100V)R 768 BIAS type sputtering (100V)
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Quality control measurement (RRR and Tc) 
are usually performed on Nb film deposited 
on Quartz substrateon Quartz substrate

Even if useful as threshold parameters, RRR and 
Tc measured on Quartz, can lead to erroneous Tc measured on Quartz, can lead to erroneous 
extrapolation for coatings deposited on copper 
substrate E
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MICROSTRUCTURE TO FUNCTIONAL PROPERTIES:
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(density, grain size, lattice distortion, residual 
stress, resputtering)



COATINGS ON DIFFERENT
SUBSTRATESUBSTRATE

Nb on COPPERNb on COPPER
substrate

BIASED (a b)BIASED (a-b)
UNBIASED (c-d) 

Nb on QUARTZ ENb on QUARTZ
substrate

BIASED (e f) 
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UNBIASED (g-h)
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Superconducting properties of MS PVD Nb
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Superconducting properties of MS-PVD Nb
films are significantly affected by

Grain sizeGrain size
surface roughness
coating densitycoating density
interfaces integrity
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HARDNESS MEASUREMENTS ON FUNCTIONAL
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Can hardness testing (coupled with FIB-SEM 
validation) be useful for the prediction of 
functional performances of Nb thin films?functional performances of Nb thin films?
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NANOINDENTATION ON NB THIN FILMS
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HARDNESS MEASUREMENTS ON FUNCTIONAL
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Sample code Description Nanoindentation micro-
indentation

H (GPa) 
H (GPa) E (GPa)

( )
Korsunsky

model

796 Nb on Cu 
BIAS type

3,10 ± 0,58 101,5 ± 23,61 2,51 ± 0,15

Nb  Q t

E

797 Nb on Quartz
BIAS type

1,63 ± 0,30 76,22 ± 48,99 1,75 ± 0,12

Nb on Cu
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803 Nb on Cu
CERN type

2,59 ± 0,35 108,68 ± 11,65 2,38 ± 0,15

804 Nb on Quartz 2 19 ± 0 31 95 95 ± 26 31 2 01 ± 0 10
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OXIDE LAYER CHECK
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Applied Physics 97, EApplied Physics 97, 
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NANOINDENTATION (CSM) ON NB THIN FILMS
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OXIDE LAYER CHECK VIA NANOINDENTATION
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TEM ANALYSIS OF THE OXIDE LAYER
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TEM l  ti  b  
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Nb film TEM sample preparation by 

FIB lamella thinning

Nb film
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. B
em

p
o
rad
reso d

: In
teg

rate
o
lu

tio
n
 su

rf ed
 ap

p
ro

ach
face ch

arac

43

h
 fo

r h
ig

h
 

cterisatio
n



CASE STUDY I: CONCLUSIONS
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In case of a soft-on-hard system  substrate can 
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In case of a soft on hard system, substrate can 
significantly affect the mechanical behavior of the 
coating;

Different micro-structural effects and deformation 
mechanisms were observed at different applied mechanisms were observed at different applied 
loads

E

Surface micro-roughness, coating density, and 
thickness of the surface oxide layers are strictly 

l t d t  d ti  ti
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related to superconducting properties;

The co pled se of mic oscop  techniq es and 
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The coupled use of microscopy techniques and 
hardness testing has been the key point of all 
research activities
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CASE STUDY II
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Residual Stress Evaluation at the 
Micrometre Scale: FIB Ring Drilling, Digital g g, g
Image Correlation and Nanoindentation
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INTRODUCTION
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Residual stresses (RS) play a crucial role in 
determining the deformation behaviour and 

0
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determining the deformation behaviour and 
performance of engineered components and 
materials at any scale;materials at any scale;
They come from unreleased (inelastic) 
deformation that remain after external forces has deformation that remain after external forces has 
been removed. 
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FIRST METHOD, USING IMAGING CORRELATION:
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0,
1. Deposition of a Pt slice and milling of a 

reference dot pattern
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reference dot pattern.
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FIRST METHOD, USING IMAGING CORRELATION:
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0,
2. Measuring the holes displacement (in X, Y 

and 45°) used to calibrate the FEM model
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and 45 ) used to calibrate the FEM model.
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Before ring cutting After ring cutting
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RESULTS – ONE STEP MILLING
5
-9

/1
0
/2

0

Strain at 
maximum depth Calculated stress 

Calculated stress (FEM)
Corrected with slope

0
0
9

maximum depth
[um]

Calculated stress 
(FEM) [Pa]

Corrected with slope
[Pa]

Test-1 0.009 -6.00E+09 -5.96E+09

Test-2 0.0082 -5.47E+09 -5.35E+09

Test-3 0.009 -6.00E+09 -5.87E+09est 3 0 009 6 00 09 5 8 09

Test-4 0.0097 -6.47E+09 -6.33E+09

Test 5 0 0103 6 87E+09 6 72E+09

E

Test-5 0.0103 -6.87E+09 -6.72E+09

Analysis of the actual geometry of the pillar;
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The actual slope of the pillar is reproduced in 

the FEM model for stress-strain calibration
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Calculated average stress: -6 04 ± 0 51 GPa
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METHOD VALIDATION VS XRD-SIN2Ψ
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σφ = - 5.840 GPa

E
. B

em
p
o
rad
reso

Data from XrD measurement not 
easily readable due to a strong 
texturing of the TiN coating;
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Nevertheless,
obtained values are comparable 
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PROCEDURE DETAILS
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Z=0 vs each step

I t l Milli

p

Incremental Milling;

Steps of 200 nm

The pillar size d is 

E

The pillar size d is 
equal to the coating 
thickness
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The maximum milling 
depth is equal to the 
coating thickness 
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rfcoating thickness 
(3.8 µm)
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EXPERIMENTAL DATA
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SECOND METHOD, USING NANOINDENTATION:
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A difference in the shape of the load-depth curve is 
therefore directly correlated to the presence of a biaxial 
residual stress state, due to changes in the actual contact 
area during indentationarea during indentation.
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SECOND METHOD, USING NANOINDENTATION:
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RESULTS – STRESS CALCULATIONS
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a) Pillar – stress free – as measured Eb) Halfspace stressed coating – as measured
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• Evaluation the contact stress field in 
the moment of unloading for both d
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stressed surface and stress relieved 
pillar.
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• In this way, a residual stress stat of 
– 5,653 Gpa was evaluated by 
comparison of the two set of 
load-depth data
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CONCLUSIONS
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Research activities at LIME are focused on the 
development and application of high resolution, 

l i h i  l i l  d  f  h  

0
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multi-technique, multi-scale procedures for the 
mechanical/micro-structural characterisation of 
surfaces.surfaces.

In case of non homogeneous materials and g
coatings, the use of nano-indentation techniques, 
even at very low indentation depths, can be useful 
for a quick detection of important micro-structural 

E

for a quick detection of important micro-structural 
aspects
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By the combination of micro- and nano-hardness 
testing and SEM-TEM-FIB-AFM microscopy 
techniques  a comprehensive characterisation of 

d
: In

teg
rate

o
lu

tio
n
 su

rf

techniques, a comprehensive characterisation of 
nanostructured coatings and complex structures 
can be achieved.
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Possible contribution to Condensed Matter 
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Nuclear Science, some ideas:
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Residual stress Measurements on Pd foils or 
tubes:tubes:

Young’s Modulus (E): 118-124 Gpa
Poisson ratio (nu): 0 385-0 395Poisson ratio (nu): 0.385-0.395
Yield Stress (YS): 50-200 MPa (Pd bulk)

100 MPa residual stresses (0 5 YS)  would led to 

E

100 MPa residual stresses (0,5 YS), would led to 
0,05% relative relaxation
(epsi = sigma*(1 nu)/E)
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Possible contribution to Condensed Matter 
5
-9

/1
0
/2

0

S f  d l l h i l ti  (  

Nuclear Science, some ideas:
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Surface and local mechanical properties (even 
inter-grain):

d it  di tdensity gradients
real and apparent elastic modulus
E b ittl t hEmbrittlement phenomena
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Possible contribution to Condensed Matter 
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Sit  ifi  i ti ti   f  d 

Nuclear Science, some ideas:

0
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Site specific investigation on surface and 
subsurface:

i / t t l h  ( i iti  micro/nano-structural changes (micro-cavities 
formation concerns)
Elemental analyses via FIB TEM of the very surface Elemental analyses via FIB TEM of the very surface 
and interfaces at grain boundaries (gradients)
Electrodes decoration or patterning for a systematic EElectrodes decoration or patterning for a systematic 
study of roughness influence to micro-structural 
changes during the experiment

. B
em

p
o
rad
reso

High aspect ratio patterning (i.e. pillar forest) to 
investigate surface vs. volume and fluido-dynamic 
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effects during the experiment
More to your imagination…!
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