Anomalous "deuterium-reaction energies" within solid By Yoshiaki ARATA, M. J. A., and Yue-Chang ZHANG Osaka University, 11-1 Mihogaoka, Ibaraki, Osaka 567-0047 (Communicated Sept. 14, 1998) **Abstract**: Anomalous difference appears between the reaction energies generated within highly deuterated Pd-black and highly hydrogenerated one under the chemical reaction energies are subtracted in both samples. Enormous excess energy generates within highly deuterated Pd-black through a long period such as over several thousands hours, on the contrary highly hydrogenerated Pd-black do never produce any excess energy. Furthermore, Pd-black included mixed gases of deuterium and hydrogen also generates an excess energy, but with the considerably different characteristics from deuterated Pd-black. These experimental results clearly show that deuterium nuclear reaction is generated essentially within solid as the "solid-state plasma fusion". **Key words**: DS-cathode; Pd-black; spillover-effect; atom-cluster; nano-particle; enormous excess energy; solid-state plasma fusion. **Introduction.** Enormous reports have been published on the reaction energy of deuterons within solids by a great many researchers so far, 1),2) but it seems to be fixed as a common knowledge that their results can never be recognized because of too poor reliability concerned with a very little reproducibility and an extreme small amount of the "reaction-effect". All of those researchers have utilized "bulk-cathode" made by bulk-solid ever since their starting research. The authors consider that bulk-cathode causes the above bad result because of its absorption characteristic of deuteriums, that is, it is extremely difficult to get highly deuterated bulk-cathode with uniform density through the bulk-solid because of utilizing essentially the "diffusion-effect" only. Consequently, authors³⁾ developed the "DS-cathode" (Double Structure Cathode) whose principle is shown in Fig. 1. That is constructed with the both "inner-cathode" (Pd-black) and "outer-cathode" (Pd-vessel). Pd-black used is extremely fine powder of the nano-scale, which is called "nano-particle" and/or "atom-cluster," and is kept in a vacuum space inside the Pd-vessel. Comparing with the "bulk-cathode", the DS-cathode provides the following essentially excellent functions as demonstrated in Fig. 1; 1) Deuteriums are instantly absorbed over 100% in content into all particles of the Pd-black because of both "spillover-effect" and "atom-cluster effect". - 2) Deuterium purity is extremely pure within the DS-cathode by the "filter-effect" of Pd-vessel. - Deuterium pressure within DS-cathode becomes extremely high such as over several thousands atmosphere, until Pd-vessel breaks by the "Sievertz-law" effect. As a result, the "said-functions" of the DS-cathode provide the capability to generate tremendous excess energy within highly deuterated solid, while the "bulkcathode" is impossible at all to realize the "said-functions". **Experiment.** In order to make clear essentially the difference of the reaction energy generated in the both highly deuterated and highly hydrogenerated solids, the authors developed "Double-cell" system consisted of both D_2 O-cell and H_2 O-cell, each of which is constructed with same DS-cathode, were connected in series as shown in Fig. 2. In this case, electrolytic current passing through both cells are the same current and same density. Furthermore, when pure D_2O -cell and H_2O -cell are used, pure deuterium and pure hydrogen can be filled up essentially by the "said-function" to an extremely high pressure over several thousand atmosphere during electrolysis for long hours within the DS-cathode in each cell, respectively. Fig. 3 shows typical example of these experimental results with the electrolytic current 5.5 [Amp] and $200 [\text{mA/cm}^2]$ in the current density, and the similar results were reproduced with 100% reproducibility. Fig. 3 shows " τ - Q_{Θ} " character- Fig. 1. Concept of DS-cathode (Double Structure Cathode). Note: Symbols (A), (B), (C) and (D) have special function as follows; (A) Extreme high pressure of D₂ gas takes place easily inside DS-cathode because of "Sievertz-law". (B) Deuterium purity is extremely high inside DS-cathode because Pd-vessel works as a filter. (C) Deuterium distribution on the surface of all particles of Pd-black instantaneously extends with uniformity and high density because of function of "spillover-effect". (D) Pd-black in nano-scale instantaneously absorbes much deuteriums with over 100% in content because of essential function of "atom-cluster". istic curve in each cell (τ : measuring time, [hr]; Q_{\odot} : excess energy, [watt]; Q_{\odot} =Qout-Qin; here Qout=output power, Qin=input power) and also "Qin- Q_{\odot} " and "Ts- Q_{\odot} " relations is shown in this figure, respectively (Ts; electrolyte temperature near the surface of the cathode). These experimental results provide the following facts: - Tremendous reaction energy generates within the DS-cathode in D₂O-cell, but any energy does not produce in H₂O-cell when the chemical reaction energy is subtracted in each cell. - "Deuterium-reaction" is created in large quantities within highly deuterated solid, but "Hydrogenreaction" never created within highly hydrogenerated solid. In the present experiment, another experiment using "Mixed-cell" blended with D_2O and H_2O electrolytes ($D_2O/H_2O=2$ in weight), which is also constructed with the same DS-cathode, was carried out. Fig. 4 shows one example obtained by using this "Mixed-cell" during a long period of 8,800 hrs (\approx one year). The result shows that the reaction energy also creates in the "Mixed-cell", but that its characteristic is different in the following points from those in the D₂O-cell: - 1) To generate the same level of excess energy, input power in the "Mixed-cell" is required considerably larger than that of the D₂O-cell. - 2) When electrolytic current is stopped during electrolysis, the "Mixed-cell" suddenly degenerates the Fig. 2. "Double-cell connected with two unit same cell in series: A-cell (D₂O) and B-cell (H₂O). Note: Although A and B cells are same construction, electrolyte only is different. excess energy and quickly comes back mostly to the starting condition, while the D_2O -cell does not so much change about that, in other words, the "regeneration-function" of the excess energy from its degenerated condition related to cut in input power such as "on-off" for the input power, in the "Mixed-cell" is considerably weak than the D_2O -cell. Fig. 3. Characteristics of excess energy generated in D_2O -cell (Left-line) and H_2O -cell (Right-line). Note: Enormous differences of excess energies (Q_{\odot}) generated in D_2O -cell and H_2O -cell appear correspondingly to change of measuring time (τ), electrolyte temperature near the surface of the cathode (Ts) and input (Qin), respectively. These experimental data demonstrate that tremendous "reaction excess energy" generates within the D_2O -cell and the "said-energy" does not produce in the H_2O -cell. Fig. 4. Characteristic of excess energy generated in the "Mixed-cell" ($D_2O/H_2O=2$ in weight). Note: off* 1 [hr] and added 33 [gr] electrolyte. off**: power off 3 [hr] added 24 [gr] electrolyte. off***: change into a new electrolyte and polished the cathode surface. off****: a new electrolyte was added by only vapored one. Consequently, authors consider that the experimental facts as shown in Figs. 3 and 4 present us the information indicated essentially existing of deuterium nucleation reaction within solid as the "solid-state plasma fusion".³⁾ **Acknowledgments.** This study was conducted through a research grant from the Japan Society for the Promotion of Science. The authors would like to thank Dr. K. Sugimoto and Dr. T. Yamasaki; Emeritus Professors of Tokyo Univ. and Dr. H. Fujita; Emeritus Prof. of Osaka Univ. for their comments, and Prof. T. Yokobori, M. J. A., and Sulzer Metco Japan, President F. Kawakami for their encouragement. ## References - Fleischmann, M., and Pons, S. (1989) J. Electronal, Chem. 261, 301–308. - 2) Proc. I.C.C.F. 3, 4, 5, 6, and 7 (1993–1998). - 3) Arata, Y., and Zhang, Y. C. (1997) J. High Temperature Soc., Japan 23 (Special volume), 1–55. - 4) Fujita, H. (1994) Material Trans., JIM. 35, 573-575.