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Abstract
The existence of heavy electrons is found theoretically in nano-structure clusters
of disordered solids. The basis of the investigation is the electron band structures
of disordered semiconductors previously determined by the author. The existence
of electron energy pockets is found for the electrons in the conduction bands of
these semiconductors that are nano-confining potential valleys of dimensions in
the range of the primitive cell. The electron wave function of the confined
electron is determined in when the electron interacts with local electrical field that
is external for the energy pocket, and the average velocity of the electron is found.
An expression for electron mass of an electron localized in pocket is derived. It is
found that this electron mass is greater than the electron mass at rest and the
confined electrons are designated heavy electrons. The possibility of interactions
of protons with heavy electrons is discussed.

Introduction
The problem about the electron effective mass in solids is important with regard to both

electron and optical properties of solids. The usual methods of determining the electron effective
masses are connected with preliminary calculations of corresponding electron band structures
and further computations of electron mass values. These approaches assume there are no external
radiations (laser, etc.) that interact with the electrons in solids leading to electron mass
renormalizations according to a determined rule [1, 2]. Generally it can be considered that all
effective mass calculations about the charges (electrons and holes) in solids are based on the
corresponding electron band structures ignoring the rule given in [1, 2]. However, recently some
authors [3, 4] have considered the impact of interaction of external electro-magnetic field with
electrons in solids on the electron effective mass, and they have found that increase of this mass
can be expected. Although the authors of [3] in comparison with the authors of [4] give different
estimation of the impact of an external electro-magnetic field interacting with electrons on the
electron mass both works [3] and [4] can be considered as contributions in the theory of the
effective mass of heavy electrons. Both works assume the existence of heavy electrons in nano-
layers on the electrode surface.

The author’s research progress [5-8] in determining the electron band structures of disordered
semiconductors is the basis of this paper. Previously calculated electron band structures of
disordered nitride semiconductor compound alloys are used and the existence of energy pockets
for electrons in conduction bands is found. These energy pockets are found to be potential energy
valleys in the conduction bands having dimensions in the range of the primitive cell. Interaction
of external electrical field with electron located in energy pocket is investigated and the
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corresponding electron wave function of the confined electron in a free electron approximation is
determined. Formula for effective mass of a confined electron in pocket is derived and
conclusions are drawn about the existence of heavy electrons. The interaction of the heavy
electrons with protons is discussed.

Electron band structures of disordered solids and electron energy pockets
Disordered solids having common formula AxB1-xC (0 ≤ x ≤ 1, A and B have equal valences)

are called multinary crystals. A multinary crystal is considered to be a periodical crystal having a
large primitive super-cell, containing a finite number of quasi-elementary cells. It is found [5]
that the electron energy in a primitive super-cell of the multinary crystal can be presented in the
following way:

E(r) = ∑q  (r – Rq) E(q) (1)

Where r is the radius-vector of the electron, E(q) is electron energy in the quasi-elementary cell
q and  (r – Rq) is a delta-function. The electron band structure of the multinary crystal can be
determined on the basis of local interactions within the primitive super-cell, which determine the
corresponding sub-bands. As a matter of fact the electron band structure of the multinary crystal
determined in this way contains the same sub-bands as those determined for the primitive super-
cell of the same multinary crystal without consideration of the localizations of the interactions.
However the sub-bands determined by (1) are localized in the corresponding quasi-elementary
cells. Linear combination of atomic orbitals (LCAO) method is used by the author for electron
band structure calculations for disordered solids in case of nitride semiconductors.

After detailed investigation, the author found [5-8] that the properties of a disordered
semiconductor can be determined if it is taken only a part of the calculated LCAO electron band
structure corresponding to configuration of quasi-elementary cells giving the deepest energy
pocket for the electrons in the conduction band, deepest energy pocket for the holes in the
valence band, and that these energy pockets are at the shortest distance. To satisfy these three
conditions, a configuration of five different types of wurtzite quasi-elementary cells taken in the
following order must be used for InxGa1-xN (Fig. 1):

(1) Pure GaN quasi-elementary cell containing two atoms of Ga and two atoms of N surrounded
by second neighboring Ga cations

(2) Mixed In-GaN quasi-elementary cell containing half atoms of In, one and half atoms of Ga
and two atoms of N, having second neighboring cations In and Ga

(3) Mixed In-GaN quasi-elementary cell containing one atom In, one atom Ga and two atoms of
N, having second neighboring cations In and Ga

(4) Mixed In-GaN quasi-elementary cell containing half atoms of Ga, one and half atoms of In
and two atoms of N, having second neighboring cations In and Ga

(5) Pure InN quasi-elementary cell containing two atoms of In and two atoms of N, having
second neighboring cations In. Each type of quasi-elementary cell forms sector  of the
corresponding electron band structure ( = 1, 2, 3, 4, 5)

The same method can be used for calculation of energy band structures of other disordered
semiconductors – nitrides, arsenides, etc. The author has made LCAO electron band structure
calculations [5 – 8] for InxGa1-xN (Fig. 1), for InxAl1-xN, for GaxAl1-xN, for InOyN1-y and for non-
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stoichiometric InN:In .The energy levels 
c1 are the bottom of the conduction band, and the

energy levels 
v15 are the top of the valence band. All energies are determined by taking the

energy of the vacuum as being equal to zero. (The values shown in Fig. 1 correspond to a ratio of
1:1 between the surrounding atoms of different sorts.) The energy difference E

g = (
c1 - 

v15)
gives the energy band gap of sector . The energy level 4

c1 for InxGa1-xN (Fig. 1) is below the
neighboring levels 3

c1 and 5
c1, which means that an electron occupying this level is confined in

local potential valley 4
c1 of the conduction band of InxGa1-xN. In addition the dimensions of this

valley are equal to the dimensions of the quasi-elementary cell of InxGa1-xN containing half
atoms of Ga, one and half atoms of In and two atoms of N, having second neighboring cations In
and Ga, and these dimensions are in the range of the primitive cell – i.e. one can consider that
4

c1 forms an electron energy pocket. The same consideration can be done for the level 3
v15 in

regard to holes in the valence band of InxGa1-xN, however in this paper it is assumed that the
valence band is fully occupied in term of electrons, i.e. there are no holes, and there are no inter-
band electron transitions.

Figure 1. Electron band structure of InxGa1-xN. The electron energy pocket is designated.

Effective mass of confined electron in pocket

If an electron occupies the state 4
c1 in InxGa1-xN it will be confined in the pocket and its

further participation in a charge transfer along the solid will require its removing from the level
4

c1. One considers this removing to be done by electrical filed in order the results to be
applicable in case of interaction of other charged particles such as protons and deuterium nuclei
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with confined electrons. An applied electrical field can remove the confined electron by quantum
tunneling trough potential barrier [9]. In this case one can write:

Ψout(xμ) = D1/2  Ψin(xμ) (2)

Where Ψin(xμ) is the wave function of the confined electron, Ψout(xμ) is the wave function of the
electron after the barrier, and D is transmission coefficient. The applied electrical field has
strength ξµ acting in direction xμ. According to [9] one can write (k is electron wave vector):

                                                       Ψin(xμ) = A exp(i kµ xμ) (3)

Ψout(xμ) = C exp(i kµ xμ) (4)

The process of quantum tunneling of an electron confined in pocket 4
c1 in InxGa1-xN is

schematically described in Fig. 2. In fact the line 
c1 is the bottom of the conduction band at

point  in the electron band structure in Fig. 1, and 
v15 is the top of valence band at point  of

the same electron band structure. The shifts of the lines 
c1 and 

v15 in Fig. 2 are due to
influence of the electrical filed ξµ having designated direction on this figure as well.

ξμ
xμ


c1


v15

Sector 5 Sector 4 Sector 3 Sector 2 Sector 1 Sector 2 Sector 3 Sector 4 ………

a

Figure 2. Electron band structure of InxGa1-xN in external electrical field (not in scale).
The tunneling from level 4

c1 is shown.
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According to both [9] and Fig. 2 the transmission coefficient of quantum tunneling trough a
potential barrier of with a is

D = exp{- (2/ħ) dxExUm
a

 
0

2/1)])((2[ } (5)

Where E is the electron energy, U(x) is the potential function of the barrier, m is electron mass on
level 4

c1, and x = xµ. Also m = m*m0 where m* is electron zone mass and m0 is the electron
mass in rest. The author assumes that the bottom of the conduction band in a pocket has the same
behavior as the bottom of the same band of pure semiconductor built by the same chemical
elements as these presented in the corresponding sector. In this way the author assumes that
m*≠1. Using Fig. 2 one can write for U(x) (x = xµ):

U(x) = U0 - qξµxµ (6)

Where q is electron charge and U0 is average height of the potential barrier for ξµ=0.

It can be considered a free electron having mass m moving after the barrier. According to [10]

the average value of the velocity v out of this electron in direction xµ is:

v out = (ħ / 2 m i) ∫ { Ψ*out(xμ) д Ψout(xμ) / д xμ - Ψout(xμ) д Ψ*out(xμ) / д xμ}d xµ (7)

Considering (2) and (5) one can write

v out = (ħ / 2 m D-1 i) ∫ { Ψ*in(xμ) д Ψin(xμ) / д xμ – Ψin(xμ) д Ψ*in(xμ) / д xμ} d xµ (8)

or

v out = (ħ / 2 meff i) ∫ { Ψ*in(xμ) д Ψin(xμ) / д xμ – Ψin(xμ) д Ψ*in(xμ) / д xμ} d xµ (9)

Where meff is defined to be effective mass of the electron confined in an energy pocket and

meff = m D-1 = m*m0 exp{(2/ħ) 0*2 mm dxExqU
a

2/1

0

0 ][   } (10)

Where the condition U0 - q ξµ x – E ≥ 0 must be obeyed. The meaning of (10) is that one can
treat a confined electron as a free electron having electron effective mass meff. The expressions
(7) – (10) can be used in case of interactions of a confined electron with local fields of strength
ξµ – for example with charged particles (other electrons, protons, deuterium nuclei, etc.). The
author considers that these expressions can be used for description of currents using confined
charges in disordered solids however corresponding corrections accounting other phenomena
must be made as well.

The expression in the exponent of (10) is positive and therefore meff ≥ m*m0. It is the reason
that the author to consider that the confined electrons are heavy. The formula (10) provides that
if E→U0 or/and a→0 then meff → m*m0. This expression includes parameters a, U0, E and m*,
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i.e. meff depends on the properties of the electron band structure and for ξµ = const. (or weak ξµ)
further change of meff is possible only by change of m*. As it was mentioned above the electron
effective mass meff can be used in case of interaction of heavy electron with other charged
particles including protons and deuterium nuclei. In this way it is useful the effective Bohr radius
[9] to be determined

aB eff = ħ2 / meff q2 (11)

Using the author’s previous results [5 – 8] for LCAO electron band structure calculations and
expressions (10) and (11), the parameters meff and aB eff for heavy electrons in InxGa1-xN, in
InxAl1-xN, in InOyN1-y and in non-stoichiometric InN:In are found for: i) weak local electrical
fields ξµ << (U0 – E) / (q a); and ii) strong local electrical fields ξµ = (U0 – E) / (q a). It is
accepted that m* = 0.18 for all nitride semiconductor materials. It is assumed that a corresponds
to shortest possible distance between two nearest electron energy pockets. This situation is
shown in Fig. 2 and it can be achieved technologically in nano-layers. The results are
summarized in Table 1. It is important to be noted that the impact of the heavy electrons on the
electrical properties can be expected to be significant in nano-structures having low
concentrations of light electrons. Also this impact is higher in wide energy band gap disordered
materials because the influence of the defects on the conductivity is small. Existence of heavy
electrons in non-metal nano-layers – for example in nano-structures of metallic hydrides on
metal surfaces – can be expected as well.

Table 1. Effective masses and effective Bohr radii of heavy electrons in several disordered solids
meff, in m0 units aB eff, Å

weak field strong field weak field strong field
InxGa1-xN 851.02 50.89 0.62*10-3 0.0104
InxAl1-xN 3.41 1.28 0.1553 0.4134
InOyN1-y 11.96 2.96 0.0442 0.1788
InN:In 286.41 24.61 0.0018 0.0215

Discussion about possible interactions of protons with heavy electrons
It can be seen in Table 1 that the effective mass of the heavy electrons can reach high values in

some materials. However it depends on the local field. Therefore the necessary and sufficient
condition that the heavy electrons to behave as heavy negative particles in interactions with other
charged particles is that the field of every interaction must be weak.

In the light of the above if this condition is fulfilled, a heavy electron eh
- can participate in

process [3, 11]:

eh
- + p+ → n + νl (12)

Where p+, n and νl designate proton, neutron and neutrino respectively. In order for this process
to take place the following threshold condition about the effective mass of heavy electron eh

-

must be fulfilled [3]:

β = meff / m0 > 2.531 (13)
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The effective masses from Table 1 even for strong field interactions (except for InxAl1-xN) fulfill
the condition (13).

It must be noted that certain particles must reach the region where the heavy electron is
localized for the interaction to occur; i.e., the probability of the interaction of heavy electron–
particle is higher in nano-layers or in nano-structure clusters that are close to the surface.

Conclusion
This paper can be considered the author’s first contribution in the field of interaction of

charged particles with electrons localized in solids. Although the existence of heavy electrons in
nano-structures is shown theoretically the author considers that the conditions about weak
interaction in solids must be found in order further study of heavy electron-particle interactions
to be performed. Finding of these conditions will be subject of a future work. Future work will
also consider the role of heavy electrons in metallic hydride nano-layers.
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