References

1. Beaudette, C.G., Excess Heat. Why Cold Fusion Research Prevailed. 2000, Concord, NH: Oak Grove Press (Infinite Energy, Distributor).
2. Fleischmann, M., S. Pons, and M. Hawkins, Electrochemically induced nuclear fusion of deuterium. J. Electroanal. Chem., 1989. 261: p. 301 and errata in Vol. 263.
3. Bush, R.T. and R.D. Eagleton. Calorimetric Studies for Several Light Water Electrolytic Cells With Nickel Fibrex Cathodes and Electrolytes with Alkali Salts of Potassium, Rubidium, and Cesium. in Fourth International Conference on Cold Fusion. 1993. Lahaina, Maui: Electric Power Research Institute 3412 Hillview Ave., Palo Alto, CA 94304.
4. Mills, R.L. and P. Kneizys, Excess heat production by the electrolysis of an aqueous potassium carbonate electrolyte and the implications for cold fusion. Fusion Technol., 1991. 20: p. 65.
5. Storms, E. Excess Power Production from Platinum Cathodes Using the Pons-Fleischmann Effect. in 8th International Conference on Cold Fusion. 2000. Lerici (La Spezia), Italy: Italian Physical Society, Bologna, Italy.
6. Warner, J., J. Dash, and S. Frantz. Electrolysis of D2O With Titanium Cathodes: Enhancment of Excess Heat and Further Evidence of Possible Transmutation. in The Ninth International Conference on Cold Fusion. 2002. Beijing, China: Tsinghua University: unpublished.
7. Fleischmann, M. More About Positive Feedback; More About Boiling. in 5th International Conference on Cold Fusion. 1995. Monte-Carlo, Monaco: IMRA Europe, Sophia Antipolis Cedex, France.
8. Lonchampt, G., L. Bonnetain, and P. Hieter. Reproduction of Fleischmann and Pons Experiments. in Sixth International Conference on Cold Fusion, Progress in New Hydrogen Energy. 1996. Lake Toya, Hokkaido, Japan: New Energy and Industrial Technology Development Organization, Tokyo Institute of Technology, Tokyo, Japan.
9. Mengoli, G., et al., Calorimetry close to the boiling temperature of the D2O/Pd electrolytic system. J. Electroanal. Chem., 1998. 444: p. 155.
10. Bockris, J., et al. Triggering of Heat and Sub-Surface Changes in Pd-D Systems. in Fourth International Conference on Cold Fusion. 1994. Lahaina, Maui: Electric Power Research Institute 3412 Hillview Ave., Palo Alto, CA 94304.
11. Castellano, et al. Nuclear Transmutation in Deutered Pd Films Irradiated by an UV Laser. in 8th International Conference on Cold Fusion. 2000. Lerici (La Spezia), Italy: Italian Physical Society, Bologna, Italy.
12. Di Giulio, M., et al., Analysis of Nuclear Transmutations Observed in D- and H-Loaded Films. J. Hydrogen Eng., 2002. 27: p. 527.
13. Nassisi, V., Transmutation of elements in saturated palladium hydrides by an XeCl excimer laser. Fusion Technol., 1998. 33: p. 468.
14. Mizuno, T., et al., Production of Heat During Plasma Electrolysis. Jpn. J. Appl. Phys. A, 2000. 39: p. 6055.
15. Ohmori, T., Recent development in solid state nuclear transmutation occurring by the electrolysis. Curr. Topics Electrochem., 2000. 7: p. 101.
16. Sundaresan, R. and J. Bockris, Anomalous Reactions During Arcing Between Carbon Rods in Water. Fusion Technol., 1994. 26: p. 261.
17. Miley, G.H., et al. Advances in Thin-Film Electrode Experiments. in 8th International Conference on Cold Fusion. 2000. Lerici (La Spezia), Italy: Italian Physical Society, Bologna, Italy.
18. Storms, E., Ways to Initiate a Nuclear Reaction in Solid Environments. Infinite Energy, 2002. 8(45): p. 45.
19. Miles, M., et al. Thermal Behavior of Polarized Pd/D Electrodes Prepared by Co-deposition. in The Ninth International Conference on Cold Fusion. 2002. Beijing, China: Tsinghua University: unpublished.
20. Szpak, S., P.A. Mosier-Boss, and J.J. Smith, On the behavior of Pd deposited in the presence of evolving deuterium. J. Electroanal. Chem., 1991. 302: p. 255.
21. Arata, Y. and Y.C. Zhang. Definite Difference amoung [DS-D2O], [DS-H2O] and [Bulk-D2O] Cells in the Deuterization and Deuterium-reaction. in 8th International Conference on Cold Fusion. 2000. Lerici (La Spezia), Italy: Italian Physical Society, Bologna, Italy.
22. Case, L.C. Catalytic Fusion of Deuterium into Helium-4. in The Seventh International Conference on Cold Fusion. 1998. Vancouver, Canada: ENECO, Inc., Salt Lake City, UT.
23. Iwamura, Y., M. Sakano, and T. Itoh, Elemental Analysis of Pd Complexes: Effects of D2 Gas Permeation. Jpn. J. Appl. Phys. A, 2002. 41: p. 4642.
24. Claytor, T.N., et al. Tritium Production from Palladium Alloys. in The Seventh International Conference on Cold Fusion. 1998. Vancouver, Canada: ENECO, Inc., Salt Lake City, UT.
25. Dufour, J., et al., Interaction of palladium/hydrogen and palladium/deuterium to measure the excess energy per atom for each isotope. Fusion Technol., 1997. 31: p. 198.
26. Bae, Y.K., D.D. Lorents, and S.E. Young, Experimental confirmation of cluster-impact fusion. Phys. Rev. A: At. Mol. Opt. Phys., 1991. 44: p. R4091.
27. Cecil, F.E. and G.M. Hale. Measurement of D-D and D-Li6 Nuclear Reactions at Very Low Energies. in Second Annual Conference on Cold Fusion, "The Science of Cold Fusion". 1991. Como, Italy: Societa Italiana di Fisica, Bologna, Italy.
28. Karabut, A. B. Analysis of Experimental Results on Excess Heat Power Production, Impurity Nuclides Yield in the Cathode Material and Penetrating Radiation in Experiments with High-Current Glow Discharge. in 8th International Conference on Cold Fusion. 2000. Lerici (La Spezia), Italy: Italian Physical Society, Bologna, Italy.
29. Kasagi, J., et al. Observation of High Energy Protons Emitted in the TiDx+D Reaction at Ed=150 keV and Anomalous Concentration of 3He. in Third International Conference on Cold Fusion, "Frontiers of Cold Fusion". 1992. Nagoya Japan: Universal Academy Press, Inc., Tokyo, Japan.
30. Kosyakhkov, A.A., et al., Neutron yield in the deuterium ion implantation into titanium. Fiz. Tverd. Tela, 1990. 32: p. 3672 (in Russian).
31. Savvatimova, I. Reproducibility of Experiments in Glow Discharge and Processes Accompanying Deuterium ions Bombardment. in 8th International Conference on Cold Fusion. 2000. Lerici (La Spezia), Italy: Italian Physical Society, Bologna, Italy.
32. Takahashi, A., et al., Detection of three-body deuteron fusion in titanium deuteride under the stimulation by a deuteron beam. Phys. Lett. A, 1999. 255: p. 89.
33. Wang, T., et al., Investigating the Unknown Nuclear Reaction in a Low-Energy (E<300 keV) p + T2Hx Experiment. Fusion Technol., 2000. 37: p. 146.
34. Yuki, H., et al., Measurement of the D(d,p) reaction in Ti for 2.5 < Ed < 6.5 keV and electron screening in metal. J. Phys. Soc. Japan, 1997. 66: p. 73.
35. Beuhler, R.J., et al., Deuteron-Deuteron Fusion by Impact of Heavy-Water Clusters on Deuterated Surfaces. J. Phys. Chem., 1991. 94: p. 7665.
36. Mizuno, T., et al., Anomalous heat evolution from a solid-state electrolyte under alternating current in high-temperature D2 gas. Fusion Technol., 1996. 29: p. 385.
37. Oriani, R.A., An investigation of anomalous thermal power generation from a proton-conducting oxide. Fusion Technol., 1996. 30: p. 281.
38. Botta, E., et al. Search for 4He Production from Pd/D2 Systems in Gas Phase. in 5th International Conference on Cold Fusion. 1995. Monte-Carlo, Monaco: IMRA Europe, Sophia Antipolis Cedex, France.
39. Iazzi, F., et al. Correlated Measurements of D2 Loading and 4He Production in Pd Lattice. in The Seventh International Conference on Cold Fusion. 1998. Vancouver, Canada: ENECO, Inc., Salt Lake City, UT.
40. Celani, F., et al. The Effect of Gamma-Beta Phase on H(D)/Pd Overloading. in ICCF7, Seventh International Conference on Cold Fusion. 1998. Vancouver, Canada: ENECO, Inc., Salt Lake City, UT.
41. Manduchi, C., et al., Electric-field effects on the neutron emission from Pd deuteride samples. Nuovo Cimento Soc. Ital. Fis. A, 1995. 108: p. 1187.
42. Rajan, K.G., et al., Electromigration approach to verify cold fusion effects. Fusion Technol., 1991. 20: p. 100.
43. Jorne, J., Ultrasonic irradiation of deuterium-loaded palladium particles suspended in heavy water. Fusion Technol., 1996. 29: p. 83.
44. Stringham, R., et al. Predictable and Reproducible Heat. in The Seventh International Conference on Cold Fusion. 1998. Vancouver, Canada: ENECO, Inc., Salt Lake City, UT.
45. Lipson, A.G., et al., Initiation of nuclear fusion by cavitation action on deuterium-containing media. Zh. Tekh. Fiz., 1992. 62(12): p. 121 (in Russian).
46. Griggs, J.L. A Brief Introduction to the Hydrosonic Pump and the Associated "Excess Energy" Phenomenon. in Fourth International Conference on Cold Fusion. 1993. Lahaina, Maui: Electric Power Research Institute 3412 Hillview Ave., Palo Alto, CA 94304.
47. Karpov, S.Y., et al., On the possibility of a mechanism of cold nuclear fusion. Pis'ma Zh. Tekh. Fiz., 1990. 16(5): p. 91 (in Russian).
48. Arzhannikov, A.V. and G.Y. Kezerashvili, First observation of neutron emission from chemical reactions. Phys. Lett., 1991. A156: p. 514.
49. Beltyukov, I.L., et al., Laser-induced cold nuclear fusion in Ti-H2-D2-T2 compositions. Fusion Technol., 1991. 20: p. 234.
50. De Ninno, A., et al., Emission of neutrons as a consequence of titanium-deuterium interaction. Nuovo Cimento Soc. Ital. Fis. A, 1989. 101: p. 841.
51. Menlove, H.O., et al., The measurement of neutron emission from Ti plus D2 gas. J. Fusion Energy, 1990. 9: p. 215.
52. Vysotskii, V., et al. Experimental Observation and Study of Controlled Transmutation of Intermediate Mass Isotopes in Growing Biological Cultures. in 8th International Conference on Cold Fusion. 2000. Lerici (La Spezia), Italy: Italian Physical Society, Bologna, Italy.
53. Komaki, H. Observations on the Biological Cold Fusion or the Biological Transformation of Elements. in Third International Conference on Cold Fusion, "Frontiers of Cold Fusion". 1992. Nagoya Japan: Universal Academy Press, Inc., Tokyo, Japan.
54. Kervran, C.L., Biological Transmutation. 1980: Beekman Publishers, Inc.
55. Campari, E.G., et al. Ni-H Systems. in 8th International Conference on Cold Fusion. 2000. Lerici (La Spezia), Italy: Italian Physical Society, Bologna, Italy.
56. Sankaranarayanan, T.K., et al. Evidence for Tritium Generation in Self-Heated Nickel Wires Subjected to Hydrogen Gas Absorption/Desorption Cycles. in 5th International Conference on Cold Fusion. 1995. Monte-Carlo, Monaco: IMRA Europe, Sophia Antipolis Cedex, France.
57. Bush, R.T. and R.D. Eagleton, Evidence for Electrolytically Induced Transmutation and Radioactivity Correlated with Excess Heat in Electrolytic Cells with Light Water Rubidium Salt Electrolytes. Trans. Fusion Technol., 1994. 26(4T): p. 334.
58. Lonchampt, G., et al. Excess Heat Measurement with Patterson Type Cells. in The Seventh International Conference on Cold Fusion. 1998. Vancouver, Canada: ENECO, Inc., Salt Lake City, UT.
59. Miley, G.H. On the Reaction Product and Heat Correlation for LENRs. in 8th International Conference on Cold Fusion. 2000. Lerici (La Spezia), Italy: Italian Physical Society, Bologna, Italy.
60. Niedra, J.M. and I.T. Myers, Replication of the apparent excess heat effect in light water-potassium carbonate-nickel-electrolytic cell. Infinite Energy, 1996. 2(7): p. 62.
61. Noninski, V.C., Excess heat during the electrolysis of a light water solution of K2CO3 with a nickel cathode. Fusion Technol., 1992. 21: p. 163.
62. Notoya, R. Nuclear Products of Cold Fusion Caused by Electrolysis in Alkali Metallic Ions Solutions. in 5th International Conference on Cold Fusion. 1995. Monte-Carlo, Monaco: IMRA Europe, Sophia Antipolis Cedex, France.
63. Ohmori, T. and M. Enyo, Excess heat evolution during electrolysis of H2O with nickel, gold, silver, and tin cathodes. Fusion Technol., 1993. 24: p. 293.
64. Rothwell, J., CETI's 1 kilowatt cold fusion device denonstrated. Infinite Energy, 1996. 1(5&6): p. 18.
65. Swartz, M.R. Optimal Operating Point Characteristics of Nickel Light Water Experiments. in The Seventh International Conference on Cold Fusion. 1998. Vancouver, Canada: ENECO, Inc., Salt Lake City, UT.
66. Reifenschweiler, O., Some experiments on the decrease of tritium radioactivity. Fusion Technol., 1996. 30: p. 261.
67. Storms, E., Description of a dual calorimeter. Infinite Energy, 2000. 6(34): p. 22.
68. Miles, M. and K.B. Johnson. Improved, Open Cell, Heat Conduction, Isoperibolic Calorimetry. in Sixth International Conference on Cold Fusion, Progress in New Hydrogen Energy. 1996. Lake Toya, Hokkaido, Japan: New Energy and Industrial Technology Development Organization, Tokyo Institute of Technology, Tokyo, Japan.
69. Belzner, A., et al., Two fast mixed-conductor systems: deuterium and hydrogen in palladium - thermal measurements and experimental considerations. J. Fusion Energy, 1990. 9(2): p. 219.
70. Hansen, W.N. and M.E. Melich, Pd/D Calorimetry- The Key to the F/P Effect and a Challenge to Science. Trans. Fusion Technol., 1994. 26(4T): p. 355.
71. Storms, E., Cold Fusion: An Objective Assessment. 2001.
72. Storms, E., The Nature of the Nuclear-Active-Environment Required for Low Energy Nuclear Reactions. Infinite Energy, 2002. 8(45): p. 32.
73. Oya, Y., et al. Material Conditions to Replicate the Generation of Excess Energy and the Emission of Excess Neutrons. in The Seventh International Conference on Cold Fusion. 1998. Vancouver, Canada: ENECO, Inc., Salt Lake City, UT.
74. Storms, E., My life with cold fusion as a reluctant mistress. Infinite Energy, 1999. 4(24): p. 42.
75. Miles, M., K.B. Johnson, and M.A. Imam. Heat and Helium Measurements Using Palladium and Palladium Alloys in Heavy Water. in Sixth International Conference on Cold Fusion, Progress in New Hydrogen Energy. 1996. Lake Toya, Hokkaido, Japan: New Energy and Industrial Technology Development Organization, Tokyo Institute of Technology, Tokyo, Japan.
76. Storms, E., A critical evaluation of the Pons-Fleischmann effect: Part 1. Infinite Energy, 2000. 6(31): p. 10.
77. Miles, M., M. Fleischmann, and M.A. Imam, Calorimetric Analysis of a Heavy Water Electrolysis Experiment Using a Pd-B Alloy Cathode. 2001: Washington. p. 154.
78. Arata, Y. and Y.C. Zhang, A new energy caused by "Spillover-deuterium". Proc. Jpn. Acad., Ser. B, 1994. 70 ser. B: p. 106.
79. McKubre, M.C.H., et al. The Emergence of a Coherent Explanation for Anomalies Observed in D/Pd and H/Pd System: Evidence for 4He and 3He Production. in 8th International Conference on Cold Fusion. 2000. Lerici (La Spezia), Italy: Italian Physical Society, Bologna, Italy.
80. Clarke, B.W., et al., Search for 3He and 4He in Arata-Style Palladium Cathodes II: Evidence for Tritium Production. Fusion Sci. & Technol., 2001. 40: p. 152.
81. Iwamura, Y., et al. Detection of Anomalous Elements, X-ray and Excess Heat Induced by Continous Diffusion of Deuterium Through Multi-layer Cathode (Pd/CaO/Pd). in The Seventh International Conference on Cold Fusion. 1998. Vancouver, Canada: ENECO, Inc., Salt Lake City, UT.
82. Wipf, H. and V. Erckman, On Permeation Techniques for Electrotransport Studies on Metal-Hydrogen Systems. Scr. Metall., 1976. 10: p. 813.
83. Tamaki, M. and K. Tasaka. Field Formation of the Condensed Matter Fusion by Electro-Transport of Deuterium in Palladium. in Third International Conference on Cold Fusion, "Frontiers of Cold Fusion". 1992. Nagoya Japan: Universal Academy Press, Inc., Tokyo, Japan.
84. Wisniewski, R. and A.J. Rostocki, Hall Effect in the Pd-H System. Phys. Rev. B: Mater. Phys., 1971. 3(2): p. 251.
85. Tsuchida, T., Role of hydrogen atoms in palladium. J. Phys. Soc. Japan, 1963. 18: p. 1016.
86. Bartolomeo, C., et al. Alfred Coehn and After: The Alpha, Beta and Gamma of the Palladium-Hydrogen System. in Fourth International Conference on Cold Fusion. 1993. Lahaina, Maui: Electric Power Research Institute 3412 Hillview Ave., Palo Alto, CA 94304.
87. Del Giudice, E., et al. The Fleischmann-Pons Effect in a Novel Electrolytic Configuration. in 8th International Conference on Cold Fusion. 2000. Lerici (La Spezia), Italy: Italian Physical Society, Bologna, Italy.
88. Celani, F., et al., Deuterium overloading of palladium wires by means of high power microsecond pulsed electrolysis and electromigration: suggestions of a "phase transition" and related excess heat. Phys. Lett. A, 1996. 214: p. 1.
89. McKubre, M.C.H. Closing Comments Summerizing the Status and Progress of Experimental Studies. in The Ninth International Conference on Cold Fusion. 2002. Beijing, China: Tsinghua University: unpublished.
90. Stringham, R. and R. George, Cavitation induced micro-fusion solid state production of heat, 3He, and 4He. 1995.
91. Lipson, A.G., et al., Observation of neutrons from cavitation action on substances containing deuterium. Pis'ma Zh. Teor. Fiz., 1990. 16(9): p. 89 (in Russian).
92. Taleyarkhan, R.P., et al., Evidence for Nuclear Emissions During Acoustic Cavation. Science, 2002. 295: p. 1868.
93. Mallove, E., Excess heat in cavitation devices: World-wide testing reports. Infinite Energy, 1995. 1(3): p. 16.
94. Kim, Y.E., Cross section for cold deuterium-deuterium fusion. Fusion Technol., 1990. 17: p. 507.
95. Kasagi, J., et al. Low Energy Nuclear Fusion Reactions in Solids. in 8th International Conference on Cold Fusion. 2000. Lerici (La Spezia), Italy: Italian Physical Society, Bologna, Italy.
96. Cedzynska, K. and F.G. Will, Closed-system analysis of tritium in palladium. Fusion Technol., 1992. 22: p. 156.
97. Taubes, G., Cold Fusion Conundrum at Texas A & M. Science, 1990. 248: p. 1299.
98. Anderson, J., et al., Letters and Response about Cold Fusion at Texas A&M. Science, 1990. 249: p. 463-465.
99. Preparata, G., A new look at solid-state fractures, particle emission and 'cold' nuclear fusion. Nuovo Cimento Soc. Ital. Fis. A, 1991. 104: p. 1259.
100. Yasui, K., Fractofusion mechanism. Fusion Technol., 1992. 22: p. 400.
101. Takeda, T. and T. Takizuka, Fractofusion mechanism. J. Phys. Soc. Japan, 1989. 58(9): p. 3073.
102. Camp, W.J., Helium Detrapping and Release from Metal Tritides. J. Vac. Sci. Technol. A, 1977. 14: p. 514.
103. Storms, E., A Review of the Cold Fusion Effect. J. Sci. Expl., 1996. 10(2): p. 185.
104. Karabut, A.B., Y.R. Kucherov, and I.B. Savvatimova, Nuclear product ratio for glow discharge in deuterium. Phys. Lett. A, 1992. 170: p. 265.
105. Miles, M., B.F. Bush, and J.J. Lagowski, Anomalous effects involving excess power, radiation, and helium production during D2O electrolysis using palladium cathodes. Fusion Technol., 1994. 25: p. 478.
106. Gozzi, D., et al., X-ray, heat excess and 4He in the D/Pd system. J. Electroanal. Chem., 1998. 452: p. 251.
107. Bush, B.F. and J.J. Lagowski. Methods of Generating Excess Heat with the Pons and Fleischmann Effect: Rigorous and Cost Effective Calorimetry, Nuclear Products Analysis of the Cathode and Helium Analysis. in The Seventh International Conference on Cold Fusion. 1998. Vancouver, Canada: ENECO, Inc., Salt Lake City, UT.
108. Isobe, Y., et al. Search for Coherent Deuteron Fusion by Beam and Electrolysis Experiments. in 8th International Conference on Cold Fusion. 2000. Lerici (La Spezia), Italy: Italian Physical Society, Bologna, Italy.
109. Arata, Y. and Y.C. Zhang, Helium (4He, 3He) within deuterated Pd-black. Proc. Jpn. Acad., Ser. B, 1997. 73: p. 1.
110. Jordan, K.C., B.C. Blanke, and W.A. Dudley, Half-Life of Tritium. J. Inorg. Nucl. Chem., 1967. 29: p. 2129.
111. Corrigan, D.A. and E.W. Schneider, Tritium separation effects during heavy water electrolysis: implications for reported observations of cold fusion. J. Electroanal. Chem., 1990. 281: p. 305.
112. Boucher, G.R., F.E. Collins, and R.L. Matlock, Separation factors for hydrogen isotopes on palladium. Fusion Technol., 1993. 24: p. 200.
113. Will, F.G., K. Cedzynska, and D.C. Linton, Reproducible tritium generation in electrochemical cells employing palladium cathodes with high deuterium loading. J. Electroanal. Chem., 1993. 360: p. 161.
114. Storms, E. and C. Talcott-Storms, The effect of hydriding on the physical structure of palladium and on the release of contained tritium. Fusion Technol., 1991. 20: p. 246.
115. Matsumoto, O., et al. Tritium Production Rate. in Anomalous Nuclear Effects in Deuterium/Solid Systems, "AIP Conference Proceedings 228". 1990. Brigham Young Univ., Provo, UT: American Institute of Physics, New York.
116. Storms, E. and C.L. Talcott, Electrolytic tritium production. Fusion Technol., 1990. 17: p. 680.
117. Chien, C.C., et al., On an electrode producing massive quantities of tritium and helium. J. Electroanal. Chem., 1992. 338: p. 189.
118. Sankaranarayanan, M., et al. Investigation of Low Level Tritium Generation in Ni-H2O Electrolytic Cells. in Fourth International Conference on Cold Fusion. 1993. Lahaina, Maui: Electric Power Research Institute 3412 Hillview Ave., Palo Alto, CA 94304.
119. Itoh, T., et al. Observation of Nuclear Products Under Vacuum Conditions from Deuterated Palladium with High Loading Ratio. in 5th International Conference on Cold Fusion. 1995. Monte-Carlo, Monaco: IMRA Europe, Sophia Antipolis Cedex, France.
120. Akimoto, T., et al. Temperature dependency on counting efficiency of NE213 liquid scintillator for low level neutron measurement. in Sixth International Conference on Cold Fusion, Progress in New Hydrogen Energy. 1996. Lake Toya, Hokkaido, Japan: New Energy and Industrial Technology Development Organization, Tokyo Institute of Technology, Tokyo, Japan.
121. Bruschi, M., U. Marconi, and A. Zoccoli. The neutron spectrometer of the cold fusion experiment under the Gran Sasso Laboratory. in Hadronic Phys., Winter Course 8th 1993. 1994: World Sci., Singapore.
122. Menlove, H.O. and M.C. Miller, Neutron-burst detectors for cold-fusion experiments. Nucl. Instrum. Methods Phys. Res. A, 1990. 299: p. 10.
123. Aoyama, T., et al., Highly reliable low-level neutron detection using 3He proportional counters. Radioisot., 1991. 40: p. 188.
124. Cisbani, E., et al., Neutron Detector for CF Experiments. Nucl. Instrum. Methods Phys. Res. A, 2001. 459: p. 247.
125. Storms, E., Review of experimental observations about the cold fusion effect. Fusion Technol., 1991. 20: p. 433.
126. Takahashi, A., et al., Multibody fusion model to explain experimental results. Fusion Technol., 1995. 27: p. 71.
127. Takahashi, A. Nuclear Products by D2O/Pd Electrolysis and Multibody Fusion. in Int. Symp. Nonlinear Phenom. in Electromagnetic Fields. 1992. ISEM-Nagoya,.
128. De Ninno, A., et al., Evidence of emission of neutrons from a titanium-deuterium system". Europhys. Lett., 1989. 9: p. 221.
129. Menlove, H.O., et al. Reproducible Neutron Emission Measurements From Ti Metal in Pressurized D2 Gas. in Anomalous Nuclear Effects in Deuterium/Solid Systems, "AIP Conference Proceedings 228". 1990. Brigham Young Univ., Provo, UT: American Institute of Physics, New York.
130. Kaushik, T.C., et al., Preliminary report on direct measurement of tritium in liquid nitrogen treated TiDx chips. Indian J. Technol., 1990. 28: p. 667.
131. Jones, S.E., et al., Observation of cold nuclear fusion in condensed matter. Nature (London), 1989. 338: p. 737.
132. Bush, R.T. and R.D. Eagleton. Experimental Studies Supporting the Transmission Resonance Model for Cold Fusion in Light Water: II. Correlation of X-Ray Emission With Excess Power. in Third International Conference on Cold Fusion, "Frontiers of Cold Fusion". 1992. Nagoya Japan: Universal Academy Press, Inc., Tokyo, Japan.
133. Cellucci, F., et al. X-Ray, Heat Excess and 4He in the Electrochemical Confinement of Deuterium in Palladium. in Sixth International Conference on Cold Fusion, Progress in New Hydrogen Energy. 1996. Lake Toya, Hokkaido, Japan: New Energy and Industrial Technology Development Organization, Tokyo Institute of Technology, Tokyo, Japan.
134. Chen, S., et al., X-ray diagnostics in gas discharge. Trends Nucl. Phys., 1995. 12((3)): p. 58 (in Chinese).
135. Isagawa, S., Y. Kanda, and T. Suzuki, Present status of cold fusion experiment at KEK". Int. J. Soc. Mat. Eng. Resources, 1998. 65(1): p. 60.
136. Iwamura, Y., et al. Characteristic X-ray and Neutron Emissions from Electrochemically Deuterated Palladium. in 5th International Conference on Cold Fusion. 1995. Monte-Carlo, Monaco: IMRA Europe, Sophia Antipolis Cedex, France.
137. Iyengar, P.K., et al., Bhabha Atomic Research Centre studies on cold fusion. Fusion Technol., 1990. 18: p. 32.
138. McKubre, M.C.H., et al. Calorimetry and Electrochemistry in the D/Pd System. in The First Annual Conference on Cold Fusion. 1990. University of Utah Research Park, Salt Lake City, Utah: National Cold Fusion Institute.
139. Szpak, S., P.A. Mosier-Boss, and J.J. Smith, On the behavior of the cathodically polarized Pd/D system: Search for emanating radiation. Phys. Lett. A, 1996. 210: p. 382.
140. Takahashi, A. Results of Experimental Studies of Excess Heat vs Nuclear Products Correlation and Conceivable Reaction Model. in The Seventh International Conference on Cold Fusion. 1998. Vancouver, Canada: ENECO, Inc., Salt Lake City, UT.
141. Wang, D.L., et al. Experimental Studies on the Anomalous Phenomenon in Pd Metal Loaded with Deuterium. in Third International Conference on Cold Fusion, "Frontiers of Cold Fusion". 1992. Nagoya Japan: Universal Academy Press, Inc., Tokyo, Japan.
142. Miles, M. and B.F. Bush. Radiation Measurements at China Lake:Real or Artifacts? in The Seventh International Conference on Cold Fusion. 1998. Vancouver, Canada: ENECO, Inc., Salt Lake City, UT.
143. Rout, R.K., et al., Copious low energy emissions from palladium loaded with hydrogen or deuterium. Indian J. Technol., 1991. 29: p. 571.
144. Savvatimova, I. and A.B. Karabut. Radioactivity of the Cathode Samples after Glow Discharge. in 5th International Conference on Cold Fusion. 1995. Monte-Carlo, Monaco: IMRA Europe, Sophia Antipolis Cedex, France.
145. Dong, S.Y., et al., Precursors to 'cold fusion' phenomenon and the detection of energetic charged particles in deuterium/solid systems. Fusion Technol., 1991. 20: p. 330.
146. Jin, S., et al. Anomalous Nuclear Events in Deuterium Palladium Systems. in Second Annual Conference on Cold Fusion, "The Science of Cold Fusion". 1991. Como, Italy: Societa Italiana di Fisica, Bologna, Italy.
147. Kamada, K., Electron impact H-H and D-D fusions in molecules embedded in Al. 1. Experimental results. Jpn. J. Appl. Phys. A, 1992. 31(9): p. L1287.
148. Li, X.Z., et al., Anomalous nuclear phenomena and solid state nuclear track detector. Nucl. Tracks Radiat. Meas., 1993. 22: p. 599.
149. Lipson, A.G., et al. In-Situ Charged Particles And X-Ray Detection In Pd Thin Film-Cathodes During Electrolysis In Li2SO4/H2O. in ICCF9, Ninth International Conference on Cold Fusion. 2002. Beijing, China: Tsinghua University: unpublished.
150. Oriani, R.A. and J.C. Fisher, Generation of Nuclear Tracks during Electrolysis. Jpn. J. Appl. Phys. A, 2002. 41: p. 6180-6183.
151. Qiao, G.S., et al. Nuclear Products in a Gas-Loading D/Pd and H/Pd System. in The Seventh International Conference on Cold Fusion. 1998. Vancouver, Canada.
152. Roussetski, A.S. Investigation of Nuclear Emissions in the Process of D(H) Escaping from Deuterized (Hydrogenized) PdO-Pd-PdO and PdO-Ag Samples. in Sixth International Conference on Cold Fusion, Progress in New Hydrogen Energy. 1996. Lake Toya, Hokkaido, Japan: New Energy and Industrial Technology Development Organization, Tokyo Institute of Technology, Tokyo, Japan.
153. Rout, R.K., et al., Update on observation of low-energy emissions from deuterated and hydrated palladium. Indian J. Technol., 1993. 31: p. 551.
154. Wang, K.L., et al. Search for Better Material for Cold Fusion Experiment Using CR-39 Detector. in Second Annual Conference on Cold Fusion, "The Science of Cold Fusion". 1991. Como, Italy: Societa Italiana di Fisica, Bologna, Italy.
155. Wu, B., et al., The SEM observation of palladium-deuterium system after the gas discharge process. Gaojishu Tongxun, 1991. 1(9): p. 1 (in Chinese).
156. Miley, G.H., et al. Quantitative observations of transmutation products occuring in thin-film coated microspheres during electrolysis. in Sixth International Conference on Cold Fusion, Progress in New Hydrogen Energy. 1996. Lake Toya, Hokkaido, Japan: New Energy and Industrial Technology Development Organization, Tokyo Institute of Technology, Tokyo, Japan.
157. Miley, G.H., Possible Evidence of Anomalous Energy Effects in H/D-Loaded Solids-Low Energy Nuclear Reactions (LENRS). J. New Energy, 1997. 2(3/4): p. 6.
158. Mizuno, T. Experimental Confirmation of the Nuclear Reaction at Low Energy Caused by Electrolysis in the Electrolyte. in Proceedings for the Symposium on Advanced Research in Energy Technology 2000. 2000. Hokkaido University.
159. Mizuno, T., et al., Formation of 197Pt radioisotopes in solid state electrolyte treated by high temperature electrolysis in D2 gas. Infinite Energy, 1995. 1(4): p. 9.
160. Bush, R.T., A light water excess heat reaction suggests that 'cold fusion' may be 'alkali-hydrogen fusion'. Fusion Technol., 1992. 22: p. 301.
161. Notoya, R. and M. Enyo. Excess Heat Production in Electrolysis of Potassium Carbonate Solution with Nickel Electrodes. in Third International Conference on Cold Fusion, "Frontiers of Cold Fusion". 1992. Nagoya Japan: Universal Academy Press, Inc., Tokyo, Japan.
162. Bush, R.T. Evidence for an electrolytically induced shift in the abundance ratio of Sr-88 and Sr-86. in International Symposium on Cold Fusion and Advanced Energy Sources. 1994. Belarusian State University, Minsk, Belarus: Fusion Information Center, Salt Lake City.
163. Notoya, R., Cold fusion arising from hydrogen evolution reaction on active metals in alkali metallic ions' solutions. Environ. Res. Forum, 1996. 1-2: p. 127.
164. Ohmori, T., T. Mizuno, and M. Enyo, Isotopic distributions of heavy metal elements produced during the light water electrolysis on gold electrodes. J. New Energy, 1996. 1(3): p. 90.
165. Singh, M., et al., Verification of the George Oshawa Experiment for Anomalous Production of Iron From Carbon Arc in Water. Fusion Technol., 1994. 26: p. 266.
166. Jiang, X.L., L.J. Han, and W. Kang. Anomalous Element Production Induced by Carbon Arcing Under Water. in The Seventh International Conference on Cold Fusion. 1998. Vancouver, Canada: ENECO, Inc., Salt Lake City, UT.
167. Ransford, H.E., Non-Stellar nucleosynthesis: Transition metal production by DC plasma-discharge electrolysis using carbon electrodes in a non-metallic cell. Infinite Energy, 1999. 4(23): p. 16.
168. Ohmori, T. and M. Enyo, Iron Formation in Gold and Palladium Cathodes. J. New Energy, 1996. 1(1): p. 15.
169. Ohmori, T., et al., Transmutation in the electrolysis of lightwater - excess energy and iron production in a gold electrode. Fusion Technol., 1997. 31: p. 210.
170. Bush, R.T. and R.D. Eagleton. Evidence for Electrolytically Induced Transmutation and Radioactivity Correlated with Excess Heat in Electrolytic Cells With Light Water Rubidium Salt Electrolytes. in Fourth International Conference on Cold Fusion. 1993. Lahaina, Maui: Electric Power Research Institute 3412 Hillview Ave., Palo Alto, CA 94304.
171. Savvatimova, I. and A. Karabut. Nuclear Reaction Products Registration on the Cathode after Glow Discharge. in 5th International Conference on Cold Fusion. 1995. Monte-Carlo, Monaco: IMRA Europe, Sophia Antipolis Cedex, France.
172. Passell, T.O. Charting the Way Forward in the EPRI Research Program on Deuterated Metals. in 5th International Conference on Cold Fusion. 1995. Monte-Carlo, Monaco: IMRA Europe, Sophia Antipolis Cedex, France.
173. Kervran, C.L., Biological Transmutations. 1972: Swan House Publishing Co.
174. Vysotskii, V.I., A.A. Kornilova, and I.I. Samoyloylenko. Experimental discovery of phenomenon of low-energy nuclear transformation of isotopes (Mn55=Fe57) in growing biological cultures. in Sixth International Conference on Cold Fusion, Progress in New Hydrogen Energy. 1996. Lake Toya, Hokkaido, Japan: New Energy and Industrial Technology Development Organization, Tokyo Institute of Technology, Tokyo, Japan.
175. Vysotskii, V., et al., Observation and mass-spectrometry. Study of controlled transmutation of intermediate mass isotopes in growing biological cultures. Infinite Energy, 2001. 6(36): p. 64.
176. Anufriev, G.S. and B.S. Boltenkov, Helium isotopes and hydrogen in aluminium and other metals. Vopr. At. Nauki Tekh. Ser.: Fiz. Radiats. Povr. Radiats. Materialoved., 1991. 56(2): p. 73 (in Russian).
177. Wang, T., et al. Study of the Deuterated Titanium Ti2Hx Samples by Using Nuclear Reaction Analysis (NRA) and Materials Analysis Methods. in 8th International Conference on Cold Fusion. 2000. Lerici (La Spezia), Italy: Italian Physical Society, Bologna, Italy.
178. Lynch, J.F., J.D. Clewley, and T.B. Flanagan, The Formation of Voids in Palladium Metal by the Introduction and Removal of Interstital Hydrogen. Philos. Mag. A, 1973. 28: p. 1415.
178. Jiang, X.L., et al. Tip Effect and Nuclear-Active Sites. in The Seventh International Conference on Cold Fusion. 1998. Vancouver, Canada: ENECO, Inc., Salt Lake City, UT.
180. Huggins, R.A. Fundamental Considerations Relating to the Electrochemical Insertion of Hydrogen and Palladium into Mixed Conductors. in 8th World Hydrogen Energy Conf. 1990. Honolulu, HI: Hawaii Natural Energy Insitute, 2540 Dole St., Holmes Hall 246, Honolulu, HI 96822.
181. Jamieson, H.C., G.C. Weathrely, and F.D. Manchester, The b-a Phase Transformation in Palladium-Hydrogen Alloys. J. Less-Common Met., 1976. 56: p. 85.
182. Bockris, J., D. Hodko, and Z. Minevski. Fugacity of hydrogen isotopes in metals: degradation, cracking and cold fusion. in Symp. Hydrogen Storage Materials, Batteries, Electrochemistry 1991. 1991.
183. De Ninno, A., A. La Barbera, and V. Violant, Deformations induced by high loading ratios in palladium-deuterium compounds. J. Alloys and Compounds, 1997. 253-254: p. 181.
184. Storms, E., A Study of Those Properties of Palladium That Influence Excess Energy Production by the "Pons-Fleischmann" Effect. Infinite Energy, 1996. 2(8): p. 50.
185. Lewis, F.A., The Palladium-Hydrogen System. Platinum Met. Rev., 1982. 26: p. 121.
186. Flanagan, T.B. and W.A. Oates, The Palladium-Hydrogen System. Annu. Rev. Mater. Sci., 1991. 21: p. 269.
187. Oriani, R.A. The Physical and Metallurgical Aspects of Hydrogen in Metals. in Fourth International Conference on Cold Fusion. 1993. Lahaina, Maui: Electric Power Research Institute 3412 Hillview Ave., Palo Alto, CA 94304.
188. Huggins, R.A. Materials Aspects of the Electrochemical Insertion of Hydrogen and Deuterium into Mixed Conductors. in Fourth International Conference on Cold Fusion. 1993. Lahaina, Maui: Electric Power Research Institute 3412 Hillview Ave., Palo Alto, CA 94304.
189. Santandrea, R.P. and R.G. Behrens, A review of the thermodynamics and phase relationships in the palladium- hydrogen, palladium-deuterium and palladium-tritium systems. High Temperature Materials and Processes, 1986. 7: p. 149.
190. Gillespie, L.J. and W.R. Downs, The Palladium-Deuterium Equilibrium. J. Am. Chem. Soc., 1937. 61: p. 2494.
191. Anderson, I.S., D.K. Ross, and C.J. Carlile, The Structure of the g Phase of Palladium Deuteride. Phys. Lett. A, 1978. 68: p. 249.
192. Herrero, C. and F.D. Manchester, Location of the Low Temperature Resistivity Anomaly in Pd-D. Phys. Lett. A, 1981. 86: p. 29.
193. Wei, S.H. and A. Zunger, Instability of diatomic deuterium in fcc palladium. J. Fusion Energy, 1990. 9(4): p. 367.
194. Celani, F., et al. The Effect of g-b Phase on H(D)/Pd Overloading. in The Seventh International Conference on Cold Fusion. 1998. Vancouver, Canada: ENECO, Inc., Salt Lake City, UT.
195. Bennington, S.M., et al., In-situ measurements of deuterium uptake into a palladium electrode using time-of-flight neutron diffractometry. J. Electroanal. Chem., 1990. 281: p. 323.
196. Dillon, C.T., B.J. Kennedy, and M.M. Elcombe, The electrochemically formed palladium-deuterium system. II. In situ neutron diffraction studies. Aust. J. Chem., 1993. 46: p. 681.
197. Worsham Jr., J.E., M.K. Wilkinson, and C.G. Shull, Neutron-Diffraction Observations on the Palladium-hydrogen and Palladium-deuterium systems. J. Phys. Chem. Solids, 1957. 3: p. 303.
198. Burger, J.P., et al., Electrical Resistivity of Pd-Hx: Residual Resistivity. Solid State Commun., 1975. 17: p. 227.
199. Matsuzaki, A., T. Nishina, and I. Uchida, In situ low incident angle XRD technique with electrochemical methods. Application to deuterium charging into palladium cathode. Hyomen Gijutsu, 1994. 45: p. 106.
200. Asami, N., et al. Material Behavior of Highly Deuterated Palladium. in The Ninth International Conference on Cold Fusion. 2002. Beijing, China: Tsinghua University: unpublished.
201. Fukai, Y. and N. Okuma, Formation of superabundant vacancies in Pd hydride under high hydrogen pressures. Phys. Rev. Lett., 1994. 73: p. 1640.
202. Semiletov, S.A., et al., Electron-Diffraction Investigation of Tetragonal PdH. Kristallografiya, 1980. 25: p. 665.
203. Baranova, R.V., et al., Crystal Structure of Pd Hydride with Primitive Cubic Lattice. Sov. Phys. Crystallogr., 1980. 25: p. 736.
204. Bertalot, L., et al. Deuterium Charging in Palladium by Electrolysis of Heavy Water: Measurement of Lattice Parameter. in Fourth International Conference on Cold Fusion. 1993. Lahaina, Maui: Electric Power Research Institute 3412 Hillview Ave., Palo Alto, CA 94304.
205. Richards, P.M., Molecular-Dynamics Investigation of Deuterium Separation in PdD1.1. Phys. Rev. B: Mater. Phys., 1989. 40(11): p. 7966.
206. Louis, E., et al., Calculation of hydrogen-hydrogen potential energies and fusion rates in palladium hydride (PdxH2) clusters (x=2,4). Phys. Rev. B: Mater. Phys., 1990. 42: p. 4996.
207. Ludecki, C.M., G. Deublein, and R.A. Huggins, Thermodynamic Characterization of Metal Hydrogen Systems by Assessment of Phase Diagrams and Electrochemical Measurements. Int. J. Hydrogen Energy, 1987. 12: p. 81.
208. Picard, C., O.J. Kleppa, and G. Boureau, Thermodynamic Study of the Palladium-Hydrogen System at 245-352 C and at Pressures Up To 34 atm. J. Chem. Phys., 1978. 69: p. 5549.
209. Sakamoto, Y., et al., Calorimetric enthalpies for palladium-hydrogen (deuterium) systems at H(D) contents up to about [H]([D])/[Pd] = 0.86. J. Phys.: Condens. Mater., 1996. 8: p. 3229.
210. Flanagan, T.B., W. Luo, and J.D. Clewley, Calorimetric enthalpies of absorption and desorption of protium and deuterium by palladium. J. Less-Common Met., 1991. 172-174: p. 42.
211. Godshall, N.A., et al., Calorimetric and thermodynamic analysis of palladium-deuterium electrochemical cells. J. Fusion Energy, 1990. 9: p. 229.
212. Zhang, W.S., Z.F. Zhang, and Z.L. Zhang, Some problems on the resistance method in the in situ measurement of hydrogen content in palladium electrode. J. Electroanal. Chem., 2002. 528: p. 1.
213. Barton, J.C. and F.A. Lewis, Interface Impedance and the Apparent Electrical Resistance of Palladium Hydrides in Aqueous Solutions. Trans. Faraday Soc., 1962. 58: p. 103.
214. Baranowski, B., High Pressure Research on Palladium-Hydrogen Systems. Pt. Met. Rev., 1972. 16-17: p. 10.
215. Lee, M. and R. Glosser, Resistivity of Thin Films of the Palladium-Hydrogen System as a Function of Film Thickness. Zeitschrift fur Physik. Chemie, 1986. 147: p. 27.
216. Frazier, G.A. and R. Glosser, Charcterization of Thin Films of the Pd-H System. J. Less-Common Met., 1980. 74: p. 89.
217. Storms, E., How to produce the Pons-Fleischmann effect. Fusion Technol., 1996. 29: p. 261.
218. Cravens, D. Factors Affecting Success Rate of Heat Generation in CF Cells. in Fourth International Conference on Cold Fusion. 1993. Lahaina, Maui: Electric Power Research Institute 3412 Hillview Ave., Palo Alto, CA 94304.
219. Szpak, S., P.A. Mosier-Boss, and J.J. Smith. Reliable Procedure for the Initiation of the Fleischmann-Pons Effect. in Second Annual Conference on Cold Fusion, "The Science of Cold Fusion". 1991. Como, Italy: Societa Italiana di Fisica, Bologna, Italy.
220. McKubre, M.C.H., et al. Concerning Reproducibility of Excess Power Production. in 5th International Conference on Cold Fusion. 1995. Monte-Carlo, Monaco: IMRA Europe, Sophia Antipolis Cedex, France.
221. Hasegewa, N., et al. Observation of Excess Heat During Electrolysis of 1M LiOD in a Fuel Cell Type Closed Cell. in Fourth International Conference on Cold Fusion. 1993. Lahaina, Maui: Electric Power Research Institute 3412 Hillview Ave., Palo Alto, CA 94304.
222. Minato, J., et al. Materials/Surface Aspects of Hydrogen/Deuterium Loading into Pd Cathode. in 5th International Conference on Cold Fusion. 1995. Monte-Carlo, Monac: IMRA Europe, Sophia Antipolis Cedex, France.
223. Kozima, H. and K. Arai, Local coherence, condensation and nuclear reaction of neutrons at crystal boundary of metal hydrides and deuterides. Int. J. Hydrogen Energy, 2000. 25(9): p. 845.
224. Fisher, J.C., Liquid-drop model for extremely neutron rich nuclei. Fusion Technol., 1998. 34: p. 66.
225. Oriani, R.A., Anomalous heavy atomic masses produced by electrolysis. Fusion Technol., 1998. 34: p. 76.
226. Mills, R.L. and W.R. Good, Fractional quantum energy levels of hydrogen. Fusion Technol., 1995. 28: p. 1697.
227. Dufour, J.J., J.H. Foos, and X.J.C. Dufour, Formation and properties of hydrex and deutex. Infinite Energy, 1998. 4(20): p. 53.
228. Liu, F.S., The phonon mechanism of the cold fusion. Mod. Phys. Lett. B, 1996. 10: p. 1129.
229. Violante, V. and A. De Ninno. Quantum mechanical description of a lattice ion trap. in Sixth International Conference on Cold Fusion, Progress in New Hydrogen Energy. 1996. Lake Toya, Hokkaido, Japan: New Energy and Industrial Technology Development Organization, Tokyo Institute of Technology, Tokyo, Japan.
230. Kucherov, Y. Slow Nuclear Excitation Model. in Sixth International Conference on Cold Fusion, Progress in New Hydrogen Energy. 1996. Lake Toya, Hokkaido, Japan: New Energy and Industrial Technology Development Organization, Tokyo Institute of Technology, Tokyo, Japan.
231. Hagelstein, P.L. A Unified Model for Anomalies in Metal Deuterides. in 8th International Conference on Cold Fusion. 2000. Lerici (La Spezia), Italy: Italian Physical Society, Bologna, Italy.
232. Chubb, S.R. and T.A. Chubb. Theoretical Framework for Anomalous Heat and 4He in Transition Metal Systems. in 8th International Conference on Cold Fusion. 2000. Lerici (La Spezia), Italy: Italian Physical Society, Bologna, Italy.
233. Bazhutov, Y.N. Erzion Discovery in Cosmic Rays and its Possible Great Role in Nature in Framework of Erzion Model of Cold Nuclear Transmutation. in 8th International Conference on Cold Fusion. 2000. Lerici (La Spezia), Italy: Italian Physical Society, Bologna, Italy.
234. Matsumoto, T., Mechanisms of cold fusion: Comprehensive explanations by the Nattoh model. Mem. Fac. Eng. Hokkaido Univ., 1995. 19(2): p. 201.
235. McKibben, J.L., The missed fractionally-charged particles. 1995.
236. Rafelski, J., et al., Nuclear reactions catalyzed by a massive negatively charged particle. How Cold Fusion Can Be Catalyzed. Fusion Technol., 1990. 18: p. 136.
237. Fisher, J.C., Polyneutrons as agents for cold nuclear reactions. Fusion Technol., 1992. 22: p. 511.
238. Turner, L., Thoughts Unbottled by Cold Fusion. Phys. Today, 1989. Sept.: p. 140.
239. Feng, S., Enhancement of cold fusion rate by electron polarization in palladium deuterium solid. Solid State Commun., 1989. 72: p. 205.
240. Hora, H., G.H. Miley, and J. Kelly. Low Energy Nuclear Reactions of Protons in Host Metals. in 8th International Conference on Cold Fusion. 2000. Lerici (La Spezia), Italy: Italian Physical Society, Bologna, Italy.
241. Hora, H., et al., Proton-metal reactions in thin films with Boltzmann distribution similar to nuclear astrophysics. Fusion Technol., 1999. 36: p. 331.
242. Hora, H., J.C. Kelly, and G.H. Miley, Energy gain and nuclear transmutation by low-energy p- or d-reaction in metal lattices. Infinite Energy, 1997. 2(12): p. 48.
243. Takahashi, A., et al., Emission of 2.45 MeV and higher energy neutrons from D2O-Pd cell under biased-pulse electrolysis. J. Nucl. Sci. Technol., 1990. 27: p. 663.
244. Isobe, Y., et al., Search for multibody nuclear reactions in metal deuteride induced with ion beam and electrolysis methods. Jpn. J. Appl. Phys. A, 2002. 41(part 1): p. 1546.
245. Takahashi, A. Tetrahedral And Octahedral Resonance Fusion Under Transient Condensation Of Deuterons At Lattice Focal Points. in ICCF9, Ninth International Conference on Cold Fusion. 2002. Beijing, China: Tsinghua University: Unpublished.
246. Jones, J.E., et al., Faradaic efficiencies less than 100% during electrolysis of water can account for reports of excess heat in 'cold fusion' cells. J. Phys. Chem., 1995. 99: p. 6973.
247. Miskelly, G.M., et al., Analysis of the published calorimetric evidence for electrochemical fusion of deuterium in palladium. Science, 1989. 246: p. 793.
248. Fleischmann, M., et al., Calorimetry of the palladium-deuterium-heavy water system. J. Electroanal. Chem., 1990. 287: p. 293.
249. Shanahan, K., A Possible Calorimetric Error in Heavy Water Electrolysis on Platinum. Thermochim. Acta, 2002. 387(2): p. 95-101.
250. Nishimiya, N., et al., Hyperstoichiometric Hydrogen Occlusion by Palladium Nanoparticles Included in NaY Zeolite. J. Alloys and Compounds, 2001. 319: p. 312.
251. Arata, Y. and Y.-C. Zhang, Formation of condensed metallic deuterium lattice and nuclear fusion. Proc. Japan. Acad., 2002. 78 ser. B: p. 57.
252. Tanzella, F.L., et al. Parameters affecting the loading of hydrogen isotopes into palladium cathodes. in Sixth International Conference on Cold Fusion, Progress in New Hydrogen Energy. 1996. Lake Toya, Hokkaido, Japan: New Energy and Industrial Technology Development Organization, Tokyo Institute of Technology, Tokyo, Japan.
253. Celani, F., et al. High Hydrogen Loading into Thin Palladium Wires through Precipitate of Alkaline-Earth Carbonate on the Surface of Cathode: Evidence of New Phases in the Pd-H System and Unexpected Problems Due to Bacteria Contamination in the Heavy-Water. in 8th International Conference on Cold Fusion. 2000. Lerici (La Spezia), Italy: Italian Physical Society, Bologna, Italy.